Skip to main content

Part of the book series: Nonconvex Optimization and Its Applications ((NOIA,volume 52))

  • 464 Accesses

Abstract

Some problems that appear in the classical bending theory of elastic beams can be modelled by boundary value problems for fourth-order nonlinear differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Agarwal, Ravi. Boundary Value Problems for Higher Order Differential Equations, World Scientific, Singapore, 1986.

    Book  MATH  Google Scholar 

  2. Ambrosetti A, Rabinowitz P. Dual variational methods in critical point theory and applications. J. Funct. Anal., 1973;14:349–381.

    Article  MathSciNet  MATH  Google Scholar 

  3. Ambrosetti A. Critical Points and Nonlinear Variational Problems. Scuola Normale Superiore, Pisa, Preprint N 118, Nov. 1991.

    Google Scholar 

  4. Ambrosetti A, Badiale M. The dual Variational Principle and Elliptic Problems with Discontinuous Nonlinearities. J. Math. Anal. Appl., 1989;140:363–373.

    Article  MathSciNet  MATH  Google Scholar 

  5. Caklovic L., Li S. and Willem M. A note on Palais-Smale condition and coercivity, Difr. Int. Eqs., 1990;3:799–800.

    MathSciNet  MATH  Google Scholar 

  6. Clarke F. A classical variational principle for Hamiltonian trajectories, Proc. Amer. Math. Soc., 1979;76:186–188.

    MathSciNet  MATH  Google Scholar 

  7. Clarke F, Ekeland I. Hamiltonian Trajectories Having Prescribed Minimal Period. Comm. Pure Appl. Math., 1980;XXXIII:103–116.

    Article  MathSciNet  Google Scholar 

  8. Feireisl E. Non-zero time periodic solutions to an equation of Petrovsky type with nonlinear boundary conditions: slow oscillations of beams on elastic bearings, Ann. Sc. Norm. Sup. Pisa, 1993;20:133–146.

    MathSciNet  MATH  Google Scholar 

  9. De Figueiredo DG. Lectures on Ekeland variational principle with applications and detours, TATA Inst. Fund. Res., Springer Verlag, Heidelberg, 1989.

    MATH  Google Scholar 

  10. Grossinho MR, Ma TF. Symmetric equilibria for a beam with a nonlinear elastic foundation, Portugal. Math. 1994; 51:375–393.

    MathSciNet  MATH  Google Scholar 

  11. Grossinho MR, Ma TF. Existence results for a fourth order ODE with nonlinear boundary conditions, Proc. of CDE’V, Univ. Rousse, Bulgaria, ed. S. Bilchev and S. Tersian,1995:34–41.

    Google Scholar 

  12. Grossinho MR, Ma TM. Nontrivial solutions for a fourth order O.D.E with singular boundary conditions, “Proceedings of the Seventh International Colloquium on Differential Equations” ( Bainov, ed.), Bulgaria, VSP, Netherlands, 1996:123–130.

    Google Scholar 

  13. Grossinho MR, Tersian S. The dual variational principle and equilibria for a beam resting on a discontinuous nonlinear elastic foundation, Nonlinear Anal., 2000;41:417–431.

    Article  MathSciNet  MATH  Google Scholar 

  14. Gupta C. Existence and uniqueness result for the bending of an elastic beam equation at resonance, J. Math. Anal. Appl. 1988;135:208–225.

    Article  MathSciNet  MATH  Google Scholar 

  15. Monteiro Marques, Manuel D P. Differential Inclusions in Nonsmooth Mechanical Problems. Basel: Birkhäuser, 1993.

    MATH  Google Scholar 

  16. Mawhin, Jean and Willem, Michael. Critical Point Theory and Hamiltonian Systems. N.Y.: Springer-Verlag, 1988.

    Google Scholar 

  17. Rabinowitz P. Minimax Methods in Critical Point Theory and Applications to Differential Equations. CBMS Reg. Conf. 65, AMS, Providence, R.I., 1986.

    Google Scholar 

  18. O’Regan D. Second and higher order systems of boundary value problems, J. Math. Anal. Appl., 1991;156:0–149.

    Google Scholar 

  19. Rockafellar RT. Convex Analysis, Princeton, N.J.: Princeton Univ. Press, 1970.

    MATH  Google Scholar 

  20. Stampacchia G. Le problème de Dirichlet pour les équations elliptiques du second ordre a coefficients discontinus, Ann. Inst. Fourier (Grenoble) 1965;15:189–258.

    Article  MathSciNet  MATH  Google Scholar 

  21. Sanchez L. Boundary value problems for some fourth order ordinary differential equations, Applicable Analysis, 1990;38:161–177.

    Article  MathSciNet  MATH  Google Scholar 

  22. Weaver W Jr, Timoshenko S and Young DH. Vibrations Problems in Engineering, 5th ed, John Wiley and Sons, New York, 1990.

    Google Scholar 

  23. Willem, Michael. Analyse Convexe et Optimisation. Louvain laNeuve: CIACO, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

do Rosário Grossinho, M., Tersian, S.A. (2001). Dual Variational Method and Applications to Boundary Value Problems. In: An Introduction to Minimax Theorems and Their Applications to Differential Equations. Nonconvex Optimization and Its Applications, vol 52. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3308-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3308-2_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4849-6

  • Online ISBN: 978-1-4757-3308-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics