Advertisement

Dual Variational Method and Applications to Boundary Value Problems

  • Maria do Rosário Grossinho
  • Stepan Agop Tersian
Part of the Nonconvex Optimization and Its Applications book series (NOIA, volume 52)

Abstract

Some problems that appear in the classical bending theory of elastic beams can be modelled by boundary value problems for fourth-order nonlinear differential equations.

Keywords

Convex Function Lower Semicontinuous Critical Point Theory Nonlinear Boundary Condition Minimax Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [Aga]
    Agarwal, Ravi. Boundary Value Problems for Higher Order Differential Equations, World Scientific, Singapore, 1986.zbMATHCrossRefGoogle Scholar
  2. [ARa]
    Ambrosetti A, Rabinowitz P. Dual variational methods in critical point theory and applications. J. Funct. Anal., 1973;14:349–381.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [Amb]
    Ambrosetti A. Critical Points and Nonlinear Variational Problems. Scuola Normale Superiore, Pisa, Preprint N 118, Nov. 1991.Google Scholar
  4. [ABa]
    Ambrosetti A, Badiale M. The dual Variational Principle and Elliptic Problems with Discontinuous Nonlinearities. J. Math. Anal. Appl., 1989;140:363–373.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [CLW]
    Caklovic L., Li S. and Willem M. A note on Palais-Smale condition and coercivity, Difr. Int. Eqs., 1990;3:799–800.MathSciNetzbMATHGoogle Scholar
  6. [Cl]
    Clarke F. A classical variational principle for Hamiltonian trajectories, Proc. Amer. Math. Soc., 1979;76:186–188.MathSciNetzbMATHGoogle Scholar
  7. [ClEk]
    Clarke F, Ekeland I. Hamiltonian Trajectories Having Prescribed Minimal Period. Comm. Pure Appl. Math., 1980;XXXIII:103–116.MathSciNetCrossRefGoogle Scholar
  8. [Fe]
    Feireisl E. Non-zero time periodic solutions to an equation of Petrovsky type with nonlinear boundary conditions: slow oscillations of beams on elastic bearings, Ann. Sc. Norm. Sup. Pisa, 1993;20:133–146.MathSciNetzbMATHGoogle Scholar
  9. [Fig]
    De Figueiredo DG. Lectures on Ekeland variational principle with applications and detours, TATA Inst. Fund. Res., Springer Verlag, Heidelberg, 1989.zbMATHGoogle Scholar
  10. [GM1]
    Grossinho MR, Ma TF. Symmetric equilibria for a beam with a nonlinear elastic foundation, Portugal. Math. 1994; 51:375–393.MathSciNetzbMATHGoogle Scholar
  11. [GM1]
    Grossinho MR, Ma TF. Existence results for a fourth order ODE with nonlinear boundary conditions, Proc. of CDE’V, Univ. Rousse, Bulgaria, ed. S. Bilchev and S. Tersian,1995:34–41.Google Scholar
  12. [GM3]
    Grossinho MR, Ma TM. Nontrivial solutions for a fourth order O.D.E with singular boundary conditions, “Proceedings of the Seventh International Colloquium on Differential Equations” ( Bainov, ed.), Bulgaria, VSP, Netherlands, 1996:123–130.Google Scholar
  13. [GT2]
    Grossinho MR, Tersian S. The dual variational principle and equilibria for a beam resting on a discontinuous nonlinear elastic foundation, Nonlinear Anal., 2000;41:417–431.MathSciNetzbMATHCrossRefGoogle Scholar
  14. [G]
    Gupta C. Existence and uniqueness result for the bending of an elastic beam equation at resonance, J. Math. Anal. Appl. 1988;135:208–225.MathSciNetzbMATHCrossRefGoogle Scholar
  15. [Mon]
    Monteiro Marques, Manuel D P. Differential Inclusions in Nonsmooth Mechanical Problems. Basel: Birkhäuser, 1993.zbMATHGoogle Scholar
  16. [MW2]
    Mawhin, Jean and Willem, Michael. Critical Point Theory and Hamiltonian Systems. N.Y.: Springer-Verlag, 1988.Google Scholar
  17. [Ra2]
    Rabinowitz P. Minimax Methods in Critical Point Theory and Applications to Differential Equations. CBMS Reg. Conf. 65, AMS, Providence, R.I., 1986.Google Scholar
  18. [Re]
    O’Regan D. Second and higher order systems of boundary value problems, J. Math. Anal. Appl., 1991;156:0–149.Google Scholar
  19. [Roc]
    Rockafellar RT. Convex Analysis, Princeton, N.J.: Princeton Univ. Press, 1970.zbMATHGoogle Scholar
  20. [St]
    Stampacchia G. Le problème de Dirichlet pour les équations elliptiques du second ordre a coefficients discontinus, Ann. Inst. Fourier (Grenoble) 1965;15:189–258.MathSciNetzbMATHCrossRefGoogle Scholar
  21. [S]
    Sanchez L. Boundary value problems for some fourth order ordinary differential equations, Applicable Analysis, 1990;38:161–177.MathSciNetzbMATHCrossRefGoogle Scholar
  22. [WTY]
    Weaver W Jr, Timoshenko S and Young DH. Vibrations Problems in Engineering, 5th ed, John Wiley and Sons, New York, 1990.Google Scholar
  23. [Wil2]
    Willem, Michael. Analyse Convexe et Optimisation. Louvain laNeuve: CIACO, 1987.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Maria do Rosário Grossinho
    • 1
    • 2
  • Stepan Agop Tersian
    • 3
  1. 1.ISEGUniversidade Técnica de LisboaPortugal
  2. 2.CMAFUniversidade de LisboaPortugal
  3. 3.University of RousseBulgaria

Personalised recommendations