Multi-dimensional Inverse Scattering Theory

  • Hiroshi Isozaki
Part of the International Society for Analysis, Applications and Computation book series (ISAA, volume 9)


This is an extended version of my notes of lectures delivered at Tohoku University in November 1999. Some parts of these notes have already appeared as a review article in the expository journal Suugaku published from the Japanese Mathematical Society. Because of the lack of space, I had to cut off some of the detailed arguments there, which I present in this paper.


Inverse Problem Inverse Scattering Green Operator Schrodinger Equation Stratify Medium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. Agmon, Spectral properties of Schrödinger operators and scattering theory, Ann. Scoula. Norm. Sup. Pisa Ser. 4 (1975), 151–218.MathSciNetGoogle Scholar
  2. [2]
    S. Agmon and L. Hörmander, Asymptotic properties of solutions of differential equations with simple characteristics, J. d’Analyse Math. 30 (1976), 1–38.zbMATHCrossRefGoogle Scholar
  3. [3]
    Z.S. Agranovich and V.A. Marchenko, The Inverse Problem of Scattering Theory, Gordon and Breach, New York, 1963.zbMATHGoogle Scholar
  4. [4]
    R. Beals and R.R. Coifman, Multidimensional inverse scatterings and nonlinear partial differential equations, Proc. Symp. Pure Math. 43 (1985), 45–70.MathSciNetCrossRefGoogle Scholar
  5. [5]
    M.I. Belishev and Y.V. Kurylev, To the reconstruction of a Riemannian manifold via its spectral data (BC-Method), Commun. in P.D.E. 17 (1992), 767–804.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    A.P. Calderôn, On an inverse boundary value problem, Seminar on Numerical Analysis and its Applications to Continuum Physics, Soc. Brasileria de Matematica, Rio de Janeiro (1980), 65–73.Google Scholar
  7. [7]
    H.L. Cycon, R.G. Froese, W. Kirsch and B. Simon, Schrödinger Operators with Application to Quantum Mechanics and Global Geometry, Springer-Verlag, Berlin Heidelberg, 1987.zbMATHGoogle Scholar
  8. [8]
    K. Chadan - P.C. Sabatier, Inverse Problems in Quantum Scattering Theory, 2nd Ed., Springer, New York, 1989zbMATHCrossRefGoogle Scholar
  9. [9]
    V. Enss and R. Weder, The geometrical approach to multidimensional inverse scattering, J. Math. Phys. 36 (1995), 3902–3921.MathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    G. Eskin and J. Ralston, Inverse scattering problem for the Schrödinger equation with magnetic potential at a fixed energy, Commun. Math. Phys. 173 (1995), 199–224.MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    L.D. Faddeev, Uniqueness of the inverse scattering problem, Vestnik Leningrad Univ. 11 (1956), 126–130.MathSciNetGoogle Scholar
  12. [12]
    L.D. Faddeev, The inverse problem in the quantum theory of scattering, J. Math. Phys. 4 (1963), 72–104MathSciNetCrossRefGoogle Scholar
  13. [13]
    L.D. Faddeev, Growing solutions of the Schrödinger equation, Soy. Phys. Dokl. 10 (1966), 1033–1035.Google Scholar
  14. [14]
    L.D. Faddeev, Factorization of the S-matrix for the multidimensional Schrödinger operator, Sov. Phys. Dokl. 11 (1966), 209–211.MathSciNetGoogle Scholar
  15. [15]
    L.D. Faddeev, Inverse problem of quantum scattering theory, J. Sov. Math. 5 (1976), 334–396.zbMATHCrossRefGoogle Scholar
  16. [16]
    L.D. Faddeev, 40 years in Mathematical Physics, World Sientific (1995).Google Scholar
  17. [17]
    A.S. Fokas and M.J. Ablowitz, The inverse scattering transform for multidimensional 2 + 1 problem, Proc., Oaxtepec, Mexico,1982, K.B. Wolf, ed., Lecture Notes in Physics, No 189, Springer, Berlin.Google Scholar
  18. [18]
    K.O. Friedrichs, On the perturbation of continuous spectra, C.P.A.M. 1 (1948), 361–406MathSciNetzbMATHGoogle Scholar
  19. [19]
    C. Gérard, H. Isozaki and E. Skibsted, Commutator algebra and resolvent estimates, Advanced Studies in Pure Mathematics 23, 1993, Spectral and Scattering Theory and Related Topics,ed. K.Yajima.Google Scholar
  20. [20]
    Gel’fand - Levitan, On the determination of a differential equation from its spectral function, Izvestia Akad. Nauk S.S.S.R. Ser. Math. 15 (1951), 309, Amer. Math. Soc. Transi. 1, 253.Google Scholar
  21. [21]
    G.M.Goluzin, Geometric Theory of Functions of a Complex Variable, Amer. Math. Soc., 1969.Google Scholar
  22. [22]
    P.G. Grinevich and R.G. Novikov, Transparent potentials at fixed energy in dimension two. Fixed-energy dispersion trelations for the fast decaying potentials, Commun. Math. Phys. 174 (1995), 409–446.MathSciNetzbMATHCrossRefGoogle Scholar
  23. [23]
    G. Hachem, The â-approach to inverse scattering for Dirac operators, Inverse Problems 11 (1995), 123–146.MathSciNetzbMATHCrossRefGoogle Scholar
  24. [24]
    T. Hatziafratis, An explicit Koppelman type integral formula on analytic varieties, Michigan Math. J. 33 (1986), 335–341.MathSciNetzbMATHCrossRefGoogle Scholar
  25. [25]
    W. Heisenberg, Die “beobachtbaren Grössen” in der Theorier der Elementarteilchen, Z. für Phys. 120 (1943), 513–538, II, ibid, 673–702.Google Scholar
  26. [26]
    M.Ikehata and G.Nakamura, Inverse boundary value problem ... 15 years from Calderon, Suugaku Vol 48, No 3, 1996, Iwanami (in Japanese).Google Scholar
  27. [27]
    V. Isakov, Uniqueness and stability in multi-dimensional inverse problems, Inverse Problems 9 (1993), 579–621.MathSciNetzbMATHCrossRefGoogle Scholar
  28. [28]
    V. Isakov, Inverse Source Problems, American Mathematical Society, Providence, Rhode Island, (1990).Google Scholar
  29. [29]
    V. Isakov and A. Nachman, Global uniqueness for a two-dimensional semi-linear elliptic inverse problem, Trans. A.M.S. 347 (1995), 3375–3390.MathSciNetzbMATHCrossRefGoogle Scholar
  30. [30]
    H. Isozaki, A generalization of the radiation condition of Sommerfeld for N-body Schrödinger operators, Duke Math. J., 74 (1994), 557–584.MathSciNetzbMATHCrossRefGoogle Scholar
  31. [31]
    H. Isozaki, On N-body Schrödinger operators, Proc. Indian Acad. Sci. (Math. Sci.), 104 (1994), 667–703.MathSciNetzbMATHGoogle Scholar
  32. [32]
    H. Isozaki, Multi-dimensional inverse scattering theory for Schrödinger operators, Reviews in Math. Phys. 8 (1996), 591–622.MathSciNetzbMATHCrossRefGoogle Scholar
  33. [33]
    H. Isozaki, Inverse scattering theory for Dirac operators, Ann. l’L H. P. Physique Théorique 66 (1997), 237–270.MathSciNetzbMATHGoogle Scholar
  34. [34]
    H. Isozaki, Inverse scattering theory for wave equations in stratified media, J. Diff. Eq. 138 (1997), 19–54.MathSciNetzbMATHCrossRefGoogle Scholar
  35. [35]
    H. Isozaki, Inverse Problems in Scattering Theory, Lecture Notes in Ryukoku University, Center of Science and Technology of Ryuukoku University (1996) (in Japanese).Google Scholar
  36. [36]
    H. Isozaki, QFT for saclar particles in external fields on Rimannian manifolds, to appear in Rev. in Math. Phys..Google Scholar
  37. [37]
    H.T. Ito, High-energy behavior of the scattering amplitude for a Dirac operator, Publ. RIMS. Kyoto Univ. 31 (1995), 1107–1133.zbMATHCrossRefGoogle Scholar
  38. [38]
    I. Kay and H.E. Moses, The determination of the scattering potential from the spectral measure function, I. Continuous spectrum, Nuovo Cimento 2 (1955), 917–961.MathSciNetzbMATHCrossRefGoogle Scholar
  39. [39]
    I. Kay and H.E. Moses, The determination of the scattering potential from the spectral measure function, II. Point eigenvalues and proper eigenfunctions, Nuovo Cimento 3 (1956), 66–84.MathSciNetCrossRefGoogle Scholar
  40. [40]
    I. Kay and H.E. Moses, The determination of the scattering potential from the spectral measure function, III. Valculation of the scattering potential from the scattering operator for the one-dimensional Schrödinger equation, Nuovo Cimento 3 (1956), 276–304.MathSciNetCrossRefGoogle Scholar
  41. [41]
    I. Kay - H.E. Moses, Nuovo Cimento 22 (1961), 683, C.P.A.M. 41 (1961), 435MathSciNetGoogle Scholar
  42. [42]
    W. Koppelman, The Cauchy integral formula for functions of several complex variables, Bull. Amer. Math. Soc. 73 (1967), 373–377.MathSciNetzbMATHCrossRefGoogle Scholar
  43. [43]
    S.G. Krantz, Function Theory of Several Complex Variables, Pure and Applied Mathematics, John Wiley and Sons, 1982.Google Scholar
  44. [44]
    A. Martin, Construction of the scattreing amplitude from differential cross section, Nuovo Cimento 59 A (196), 131–151.Google Scholar
  45. [45]
    A. Melin, On the use of intertwining operators in inverse scattering, Schrödinger Operators, eds. H. Holden and A. Jensen, Lecture Notes in Physics 345, Springer (1989).Google Scholar
  46. [46]
    C. Moeller, Kgl. Danske Videnskap Selskab, Mat.-fys. Medd. 23 (1945), 22 (1946)Google Scholar
  47. [47]
    R. Lavine and A. Nachman, On the inverse scattering transform of the n-dimensional Schrödinger operator, Topics in Soliton Theory and Exactly Solvable Nonlinear Equations, Eds., M. Ablowitz, B. Fuchssteiner and K. Kruskal, World Scientific Publ., Singapore (1987)Google Scholar
  48. [48]
    E. Mourre, Absence of singular continuous spectrum of certain self-adjoint operators, Commun. Math. Phy., 78 (1981), 391–408.MathSciNetzbMATHCrossRefGoogle Scholar
  49. [49]
    A. Nachman, Reconstructions from boundary measurements, Ann. Math. 128 (1988), 531–576.MathSciNetzbMATHCrossRefGoogle Scholar
  50. [50]
    A. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem, Ann. Math. 143 (1996), 71–96.MathSciNetzbMATHCrossRefGoogle Scholar
  51. [51]
    A. Nachman and M. Ablowitz, A multidimensional inverse scattering-method, Studie in Appl. Math. 71 (1984), 243–250.MathSciNetzbMATHGoogle Scholar
  52. [52]
    G. Nakamura and G. Uhlmann, Global uniqueness for an inverse boundary problem arising in elasticity, Invent. math. 118 (1994), 457–474.MathSciNetzbMATHCrossRefGoogle Scholar
  53. [53]
    G. Nakamura, Z. Sun and G. Uhlmann, Global identifiability for an inverse problem for the Schrödinger equation in a magnetic field, Math. Ann. 303 (1995), 377–388.MathSciNetzbMATHCrossRefGoogle Scholar
  54. [54]
    R.G. Newton, Construction of potentials from the phase shifts at fixed energy, J. Math. Phys. 3 (1962), 75–82.zbMATHCrossRefGoogle Scholar
  55. [55]
    R.G. Newton, The Gel’fand-Levitan method in the inverse scattering problem, in Scattering Theory in Mathematical Physics, J.A. Lavita and J.P. Marchand, Eds., D.Reidel, Dordrecht, 1974.Google Scholar
  56. [56]
    R.G. Newton, Inverse Schrödinger Scattering in Three Dimensions, Springer-Verlag, Berlin-Heidelberg-New York, 1989.zbMATHCrossRefGoogle Scholar
  57. [57]
    F. Nicoleau, A stationary approach to inverse scattering for Schrödinger operators with first order perturbations, Commun. in P.D.E. 22 (1997), 527–553.MathSciNetzbMATHCrossRefGoogle Scholar
  58. [58]
    R.G. Novikov and G.M. Khnkin, The a-equation in the multi-dimensional inverse scattering problem, Russian Math. Surveys 42 (1987), 109–180.zbMATHCrossRefGoogle Scholar
  59. [59]
    P. OIa, L. Päivärinta and E. Somersalo, An inverse boundary value problem in elecro-dynamics, Duke Math. J. 70 (1993), 617–653.MathSciNetCrossRefGoogle Scholar
  60. [60]
    A.G. Ramm, Multi-dimensional Inverse Scattering Problem, Longman Scientific and Technical, (1992).Google Scholar
  61. [61]
    M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol 1~4,Academic Press, New York London.Google Scholar
  62. [62]
    T. Regge, Introduction to complex orbital moments, Nuovo Cimento 14 (1959), 951–976.MathSciNetzbMATHCrossRefGoogle Scholar
  63. [63]
    V.G. Romanov, Inverse Problems of Mathematical Physics, VNU Science Press BV Utrecht (1987).Google Scholar
  64. [64]
    P.C. Sabatier, Asymptotic properties of the potentials in the inverse scattering problem at fixed energy, J. Math. Phys. 7 (1966), 1515–1531.MathSciNetCrossRefGoogle Scholar
  65. [65]
    Y. Saito, An asymptotic behavior of the S-matrix and the inverse scattering problem, J. Math. Phys. 25 (1984), 3105–3111.MathSciNetzbMATHCrossRefGoogle Scholar
  66. [66]
    J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Ann. Math., 125 (1987), 153–169.MathSciNetzbMATHCrossRefGoogle Scholar
  67. [67]
    G. Uhlmann, Inverse boundary value problems and applications, S.M.F. Astérisque 207 (1992), 153–211.MathSciNetGoogle Scholar
  68. [68]
    X.P. Wang, On the uniqueness of inverse scattering for N-body systems, Inverse Problems 10 (1994), 765–784.MathSciNetzbMATHCrossRefGoogle Scholar
  69. [69]
    R. Weder, Generalized limiting absorption method and multidimensional inverse scattering theory, Math. Meth. in Appl. Sci. 14 (1991), 509–524.MathSciNetzbMATHCrossRefGoogle Scholar
  70. [70]
    J.A. Wheeler, On the mathematical description of light nuclei by the method of resonating group structure, Phys. Rev. 52 (1937), 1107.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Hiroshi Isozaki
    • 1
  1. 1.Department of MathematicsOsaka UniversityToyonaka, 560Japan

Personalised recommendations