Advertisement

Analytic Function Spaces and their Applications to Nonlinear Evolution Equations

  • Nakao Hayashi
Part of the International Society for Analysis, Applications and Computation book series (ISAA, volume 9)

Abstract

In this note we present a survey of recent progress on analyticity of solutions to nonlinear Schrödinger equations and generalized Korteweg-de Vries equation. We also state some applications of analytic function spaces to these equations. Nonlinear Schrödinger equations considered in this note are written
$$\left\{ {\begin{array}{*{20}{c}} {i{\partial _t}u + \frac{1}{2}\Delta u = N(u),(t,x) \in R \times {R^n}} \\ {u(0,x) = {u_0}(x),x \in {R^n}} \end{array}} \right.$$
(1.1)
where nonlinear terms N(u) will be defined in each theorem below and n denotes the spatial dimension. The generalized Korteweg-de Vries equation is written
$$\left\{ {\begin{array}{*{20}{c}} {{\partial _t}u + \frac{1}{3}\partial _{{x_1}}^3u + {\partial _{{x_1}}}({{\left| u \right|}^{p - 1}}u) = 0,(t,{x_1}) \in R \times R} \\ {U(0,{x_1}) = {u_0}({x_1}),{x_1} \in R} \end{array}} \right.$$
(1.2)
where p ∈ N. Local and global in time of solutions to these equations were studied extensively by many authors in the usual Sobolev spaces (see, e.g.,[8], [22],[23], [41], [42], [44], [51] and references cited these papers). In order to state recent progress on (1.1) and (1.2) precisely, we need some function spaces and notations Function spaces and notation. We use the usual Lebesgue space
$${L^p} = \left\{ {\phi \in S';{{\left\| \phi \right\|}_p} < + \infty } \right\}.$$
.

Keywords

Analytic Continuation Global Existence Nonlinear Evolution Equation Schrodinger Equation Large Time Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Aikawa, N., Infinite order Sobolev spaces, analytic continuation and polynomial expansions, Complex Variables, Vol. 18 (1992), pp. 253–266.MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    Aikawa, H. and Hayashi, N., Holomorphic solutions of semilinear heat equations, Complex Variables, Vol. 18 (1991), pp. 115–125.MathSciNetGoogle Scholar
  3. [3]
    Aikawa, H., Hayashi, N. and Saitoh, S., The Bergman space on a sector and the heat equation, Complex Variables, Vol. 15 (1990), pp. 27–36.MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    Aikawa, H., Hayashi, N. and Saitoh, S., Isometrical identities for the Bergman and the Szegö spaces on a sector, J. Math. S.c. Japan, Vol. 43 (1991), pp. 195–201.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    Bouard, A., Hayashi, N. and Kato, K., Gevrey regularizing effect for the (generalized) Korteweg-de Vries equation and nonliner Schrödinger equations, Ann. Inst. Henri Poincaré Analyse non linéaire, Vol. 12 (1995), pp. 673–725.MATHGoogle Scholar
  6. [6]
    de Bouard, A., Analytic solutions to non elliptic nonlinear Schrödinger equations, J. Diff. Eqs., Vol. 104 (1993), pp. 196–213MATHCrossRefGoogle Scholar
  7. [7]
    D’Ancona, P and Spagnolo, S., Global solvability for the degenerate Kirchhoff equation with real analytic data, Invent. Math., Vol. 108 (1992), pp. 253–277.MathSciNetGoogle Scholar
  8. [8]
    Ginibre, J. and Velo, G., On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case; II Scattering theory, general case, J. Funct. Anal., Vol. 32 (1979), pp. 1–71.MathSciNetMATHGoogle Scholar
  9. [9]
    Ginibre, J. and Velo, G., Long range scattering and modified wave operators for some Hartree type equations II, Ann. Henri Poincaré, Vol. 1 (2000), pp. 753–800.MathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    Ginibre, J. and Velo, G., Long range scattering and modified wave operators for some Hartree type equations III, Gevrey spaces and low dimensions, preprint (2000).Google Scholar
  11. [11]
    Hayashi, N., Local existence in time of solutions to higher order dispersive equations, Diff. Integral Eqs., Vol. 9 (1996), pp. 879–890.MATHGoogle Scholar
  12. [12]
    Hayashi, N., Global existence of small analytic solutions to nonlinear Schödinger equations, Duke Math. J., Vol. 60 (1990), pp. 717–727.MATHGoogle Scholar
  13. [13]
    Hayashi, N., Analyticity of solutions of the Korteweg-de Vries equation, SIAM J. Math. Anal., Vol. 22 (1991), pp. 1738–1743.MATHGoogle Scholar
  14. [14]
    Hayashi, N., Solutions of the (generalized) Korteweg-de Vries equation in the Bergman and the Szegöspaces on a sector, Duke Math. J., Vol. 62 (1991), pp. 575–591.MATHGoogle Scholar
  15. [15]
    Hayashi, N., Smoothing effect of small analytic solutions to nonlinear Schrödinger equations,Ann. Inst. Henri. Poincaré, Physique Théorique, Vol. 57 (1992), pp. 385–394.Google Scholar
  16. [16]
    Hayashi, N., Kaikina, E.I., and Naumkin, P.I., On the scattering theory for the cubic nonlinear Schrödinger and Hartree type equations in one space dimension, Hokkaido Math. J.,Vol. 27 (1998), pp. 651–667.MathSciNetMATHGoogle Scholar
  17. [17]
    Hayashi, N., Kaikina, E.I., and Naumkin, P.I., Large time behavior of solutions to the generalized derivative nonlinear Schrödinger equation, Discrete and Continuous Dynamical Systems, Vol. 5 (1999), pp. 93–106.MathSciNetMATHGoogle Scholar
  18. [18]
    Hayashi, N. and Kato, K., Regularity in time of solutions to nonlinear Schrödinger equations, J. Funct. Anal., Vol. 128 (1995), pp. 253–277.MathSciNetMATHCrossRefGoogle Scholar
  19. [19]
    Hayashi, N. and Kato, K., Analyticity in time and smoothing effect of solutions to nonlinear Schrödinger equations, Commun. Math. Phys., Vol. 184 (1997), pp. 273–300.MATHCrossRefGoogle Scholar
  20. [20]
    Hayashi, N. and Kato, K., Global existence of small analytic solutions to Schrödinger equations with quadratic nonlinearity, Commun. P.D.E., Vol. 22 (1997), pp. 773–798.MATHCrossRefGoogle Scholar
  21. [21]
    Hayashi, N., Kato, K. and Naumkin P.I., On the scattering in Gevrey classes for sub-critical Hartree and Schrödinger equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), Vol. 27 (1998), pp. 483–497MathSciNetMATHGoogle Scholar
  22. [22]
    Hayashi, N., Nakamitsu, K. and Tsutsumi, M., On solutions of the initial value problem for nonlinear Schrödinger equations in one space dimension, Math. Z., Vol. 192 (1986), pp. 637–650.MathSciNetMATHCrossRefGoogle Scholar
  23. [23]
    Hayashi, N., Nakamitsu, K. and Tsutsumi, M., On solutions of the initial value problem for nonlinear Schrödinger equations, J. Funct. Anal., Vol. 71 (1987), pp. 218–245.MathSciNetMATHCrossRefGoogle Scholar
  24. [24]
    Hayashi, N. and Naumkin, P.I., Asymptotics in large time of solutions to nonlinear Schrödinger and Hartree equations, Amer. J. Math., Vol. 120 (1998), pp. 369–389.MATHCrossRefGoogle Scholar
  25. [25]
    Hayashi, N. and Naumkin, P.I., Large time asymptotics of solutions to the generalized Korteweg-de Vries equation, J.Funct.Anal., Vol. 159 (1998), pp. 110–136.MathSciNetMATHCrossRefGoogle Scholar
  26. [26]
    Hayashi, N. and Naumkin, P.I., On the Davey-Stewartson and Ishimori systems, Math. Phy., Anal. and Geometry, Vol. 2 (1999), pp. 53–81.MATHCrossRefGoogle Scholar
  27. [27]
    Hayashi, N. and Naumkin, P.I., Global existence of small solutions to the quadratic nonlinear Schrödinger equation in two space dimensions, SIAM J. Math. Anal., to appear.Google Scholar
  28. [28]
    Hayashi, N. and Naumkin, P.I., Scattering theory and asymptotics for large time of solutions to the Hartree type equations with a long range potential, Hokkaido Math. J., to appear.Google Scholar
  29. [29]
    Hayashi, N. and Naumkin, P.I., Asymptotic Expansion of Small Analytic Solutions to the Quadratic Nonlinear Schrödinger Equations in Two Space Dimensions, preprint.Google Scholar
  30. [30]
    Hayashi, N., Naumkin, P.I. and Pipolo, P.N., Analytic smoothing effects for some derivative nonlinear Schrödinger equations, Tsukuba Math. J., Vol. 24 (2000), pp. 21–34.MathSciNetMATHGoogle Scholar
  31. [31]
    Hayashi, N., Naumkin, P.I. and Yamazaki, Y., Large time behavior of small solutions to subcritical derivative nonlinear Schrödinger equations, Proc. Amer. Math. Soc., to appear.Google Scholar
  32. [32]
    Hayashi, N., Naumkin, P.I. and Yamazaki, Y., Modified scattering states of small solutions to subcritical derivative nonlinear Schrödinger equations, preprint.Google Scholar
  33. [33]
    Hayashi, N. and Saitoh, S., Analyticity and smoothing effect for the Schrödinger equation, Ann. Inst. Henri. Poincaré, Physique Théorique, Vol. 52 (1990), pp. 163–173.MATHGoogle Scholar
  34. [34]
    Hayashi, N. and Saitoh, S., Analytisity and global existence of small solutions to some nonlinear Schrödinger equations, Commun. Math. Phys., Vol. 126 (1990), pp. 27–42.Google Scholar
  35. [35]
    Hayashi, N. and Saut, J.C., Global existence of small solutions to the Davey-Stewartson and the Ishimori systems, Diff. and Integral Eq., Vol. 8 (1995), pp. 1657–1675.MATHGoogle Scholar
  36. [36]
    Hayashi, N. and Saut, J.C., Global existence of small solutions to the Ishimori system without exponential decay on the data, Diff. and Integral Eq., Vol. 9, (1996), pp.11831195.Google Scholar
  37. [37]
    Kajitani, K., Analytically smoothing effect for Schrödinger equations, Dynamical systems and differential equations, Vol. I (Springfield, MO, 1996 ), Discrete Contin. Dynam. Systems 1998, Added Volume I, pp. 350–352.Google Scholar
  38. [38]
    Kajitani, K. and Wakabayashi, S., Analytically smoothing effect for Schrodinger type equations with variable coefficients, Direct and inverse problems of mathematical physics (Newark, DE, 1997 ), pp. 185–219, Int. Soc. Anal. Appl. Comput., 5, Kluwer Acad. Publ., Dordrecht, 2000.Google Scholar
  39. [39]
    Kato, K. and Ogawa, T., Analyticity and smoothing effect for the Korteweg de Vries equation with a single point singularity, Math. Ann. Vol 316 (2000), no. 3, 577–608.MathSciNetMATHCrossRefGoogle Scholar
  40. [40]
    Kato, K. and Taniguchi, K., Gevrey regularizing effect for nonlinear Schrödinger equations, Osaka J. Math., Vol. 33 (1996), pp. 863–880.MATHGoogle Scholar
  41. [41]
    Kato, T., On the Cauchy problem for the (generalized) Korteweg-de Vries equation, Stud. Appl. Math. Adv. in Math. Supplementary Studies, Vol 18 (1983), pp. 93–128.Google Scholar
  42. [42]
    Kato, T., On nonlinear Schorödinger equations, Ann. Inst. Henri Poincaré, Physique théorique, Vol. 46 (1987), pp. 113–129.MATHGoogle Scholar
  43. [43]
    Kato, T. and Masuda, K., Nonlinear evolution equations and analyticity, Ann. Inst. Henri Poincaré, Anal. non linéaire, Vol. 3 (1986), pp. 455–467.MATHGoogle Scholar
  44. [44]
    Kenig, C.E., Ponce, G. and Vega, L., Well-posedness and scattering results for the generalized Korteweg-de Vries equation via contraction principle, Comm. Pure Appl. Math., Vol. 46 (1993), pp. 527–620.MathSciNetMATHGoogle Scholar
  45. [45]
    Klainerman, S., Long-time behavior of solutions to nonlinear evolution equations, Arch. Rat. Mech. Anal., Vol. 78 (1982), pp. 73–98.MathSciNetMATHGoogle Scholar
  46. [46]
    Klainerman, S, Uniform decay estimates and Lorentz invariant of classical wave equation, Commun. Pure Appl. Math., Vol. 38 (1985), pp. 321–332MathSciNetMATHGoogle Scholar
  47. [47]
    Klainerman, S., The null condition and global existence to nonlinear wave equations, Lectures in Applied Math, Vol. 23 (1986), pp. 293–326MathSciNetGoogle Scholar
  48. [48]
    Klainerman, S. and Ponce, G., Global, small amplitude solutions to nonlinear evolution equations, Commun. Pure Appl. Math., Vol. 36 (1983), pp. 133–141.MathSciNetMATHGoogle Scholar
  49. [30]
    Hayashi, N., Naumkin, P.I. and Pipolo, P.N., Analytic smoothing effects for some derivative nonlinear Schrödinger equations, Tsukuba Math. J., Vol. 24 (2000), pp. 21–34.MathSciNetMATHGoogle Scholar
  50. [31]
    Hayashi, N., Naumkin, P.I. and Yamazaki, Y., Large time behavior of small solutions to subcritical derivative nonlinear Schrödinger equations, Proc. Amer. Math. Soc., to appear.Google Scholar
  51. [32]
    Hayashi, N., Naumkin, P.I. and Yamazaki, Y., Modified scattering states of small solutions to subcritical derivative nonlinear Schrödinger equations, preprint.Google Scholar
  52. [33]
    Hayashi, N. and Saitoh, S., Analyticity and smoothing effect for the Schrödinger equation, Ann. Inst. Henri. Poincaré, Physique Théorique, Vol. 52 (1990), pp. 163–173.MATHGoogle Scholar
  53. [34]
    Hayashi, N. and Saitoh, S., Analytisity and global existence of small solutions to some nonlinear Schrödinger equations, Commun. Math. Phys., Vol. 126 (1990), pp. 27–42.Google Scholar
  54. [35]
    Hayashi, N. and Saut, J.C., Global existence of small solutions to the Davey-Stewartson and the Ishimori systems, Diff. and Integral Eq., Vol. 8 (1995), pp. 1657–1675.MATHGoogle Scholar
  55. [36]
    Hayashi, N. and Saut, J.C., Global existence of small solutions to the Ishimori system without exponential decay on the data, Diff. and Integral Eq., Vol. 9, (1996), pp.11831195.Google Scholar
  56. [37]
    Kajitani, K., Analytically smoothing effect for Schrödinger equations, Dynamical systems and differential equations, Vol. I (Springfield, MO, 1996 ), Discrete Contin. Dynam. Systems 1998, Added Volume I, pp. 350–352.Google Scholar
  57. [38]
    Kajitani, K. and Wakabayashi, S., Analytically smoothing effect for Schrodinger type equations with variable coefficients, Direct and inverse problems of mathematical physics (Newark, DE, 1997 ), pp. 185–219, Int. Soc. Anal. Appl. Comput., 5, Kluwer Acad. Publ., Dordrecht, 2000.Google Scholar
  58. [39]
    Kato, K. and Ogawa, T., Analyticity and smoothing effect for the Korteweg de Vries equation with a single point singularity, Math. Ann. Vol 316 (2000), no. 3, 577–608.MathSciNetMATHCrossRefGoogle Scholar
  59. [40]
    Kato, K. and Taniguchi, K., Gevrey regularizing effect for nonlinear Schrödinger equations, Osaka J. Math., Vol. 33 (1996), pp. 863–880.MATHGoogle Scholar
  60. [41]
    Kato, T., On the Cauchy problem for the (generalized) Korteweg-de Vries equation, Stud. Appl. Math. Adv. in Math. Supplementary Studies, Vol 18 (1983), pp. 93–128.Google Scholar
  61. [42]
    Kato, T., On nonlinear Schorödinger equations, Ann. Inst. Henri Poincaré, Physique théorique, Vol. 46 (1987), pp. 113–129.MATHGoogle Scholar
  62. [43]
    Kato, T. and Masuda, K., Nonlinear evolution equations and analyticity, Ann. Inst. Henri Poincaré, Anal. non linéaire, Vo 13 (1986), pp. 455–467.Google Scholar
  63. [44]
    Kenig, C.E., Ponce, G. and Vega, L., Well-posedness and scattering results for the generalized Korteweg-de Vries equation via contraction principle, Comm. Pure Appl. Math., Vol. 46 (1993), pp. 527–620.MathSciNetMATHGoogle Scholar
  64. [45]
    Klainerman, S., Long-time behavior of solutions to nonlinear evolution equations, Arch. Rat. Mech. Anal., Vol. 78 (1982), pp. 73–98.MathSciNetMATHGoogle Scholar
  65. [46]
    Klainerman, S, Uniform decay estimates and Lorentz invariant of classical wave equation, Commun. Pure Appl. Math., Vol. 38 (1985), pp. 321–332MathSciNetMATHGoogle Scholar
  66. [47]
    Klainerman, S., The null condition and global existence to nonlinear wave equations, Lectures in Applied Math, Vol. 23 (1986), pp. 293–326MathSciNetGoogle Scholar
  67. [48]
    Klainerman, S. and Ponce, G., Global, small amplitude solutions to nonlinear evolution equations, Commun. Pure Appl. Math., Vol. 36 (1983), pp. 133–141.MathSciNetMATHGoogle Scholar
  68. [49]
    Robbiano, L. and Zuily, C., Effet regularisant microlocal analytique pour !’equation de Schrodinger: le cas des donnees oscillantes, Commun. P.D.E., Vol. 25 (2000), no. 9–10, pp. 1891–1906.MathSciNetMATHCrossRefGoogle Scholar
  69. [50]
    Robbiano, L. and Zuily, C., Microlocal analytic smoothing effect for the Schrodinger equation, Duke Math. J. Vol. 100 (1999), no. 1, pp. 93–129.MathSciNetMATHGoogle Scholar
  70. [51]
    Saut J.-C., Sur quelque généralisations de !’equation de Korteweg-de Vries, J.Math. Pure Appl., Vol. 58 (1979), pp. 21–61.Google Scholar
  71. [52]
    Shatah,.I., Global existence of small solutions to nonlinear evolution equations, J. Differential Equations, Vol. 46 (1982), pp. 409–425.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Nakao Hayashi
    • 1
  1. 1.Department of Applied MathematicsScience University of TokyoShinjuku-ku, TokyoJapan

Personalised recommendations