Advertisement

Further Topics: Analysis

  • Geir E. Dullerud
  • Fernando Paganini
Part of the Texts in Applied Mathematics book series (TAM, volume 36)

Abstract

At this point we have achieved the major goals of our course — the detailed study of the topics in Chapters 1 through 9. This chapter and the next are devoted to broadening and deepening our background by considering a number of additional topics. Our approach will be that of a technical overview, stressing the main ideas and technical machinery, with a somewhat reduced emphasis on formal demonstrations.

Keywords

Robust Stability Robustness Analysis Previous Chapter Frequency Domain Method State Space Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes and references

  1. [8]
    B. Bamieh and J.B. Pearson Jr. The H2 problem for sampled-data systems. Systems and Control Letters, 19: 1–12, 1992.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [15]
    D.S. Bernstein and W. H. Haddad. LQG control with an H. performance bound: A Riccati equation approach. IEEE Transactions on Automatic Control, 34: 293–305, 1989.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [36]
    J. C. Doyle. Guaranteed margins for LQG regulators. IEEE Transactions on Automatic Control, 23: 756–757, 1978.CrossRefGoogle Scholar
  4. [38]
    J. C. Doyle, K. Glover, P. Khargonekar, and B. A. Francis. State-Space solutions to standard H2 and H, control problems. IEEE Transactions on Automatic Control, 34: 831–847, 1989.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [39]
    J. C. Doyle and G. Stein. Robustness with observers. IEEE Transactions on Automatic Control, 24: 607–611, 1979.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [40]
    J. C. Doyle and G. Stein. Multivariable feedback design: Concepts for a classical/modern synthesis. IEEE Transactions on Automatic Control, 26: 4–16, 1981.zbMATHCrossRefGoogle Scholar
  7. [78]
    T. Iwasaki. Robust performance analysis for systems with norm-bounded time-varying structured uncertainty. In Proc. American Control Conference, 1994.Google Scholar
  8. [79]
    U. Jonsson and A. Rantzer. Optimization of integral quadratic constraints. In Recent Advances on LMI Methods in Control; editors L. El Ghaoui, S. Niculescu. SIAM, 1999.Google Scholar
  9. [90]
    P. Khargonekar and M. Rotea. Mixed H2/H c, control: A convex optimization approach. IEEE Transactions on Automatic Control, 36: 824–837, 1991.MathSciNetzbMATHCrossRefGoogle Scholar
  10. [102]
    A. Megretski and A. Rantzer. System analysis via integral quadratic constraints. IEEE Transactions on Automatic Control, 42: 819–830, 1997.MathSciNetzbMATHCrossRefGoogle Scholar
  11. [103]
    A. Megretski and S. Treil. Power distribution inequalities in optimization and robustness of uncertain systems. Jour. Math. Sys., Est. l Control, 3: 301–319, 1993.MathSciNetGoogle Scholar
  12. [115]
    F. Paganini. Sets and Constraints in the Analysis of Uncertain Systems. PhD thesis, California Institute of Technology, 1996.Google Scholar
  13. [116]
    F. Paganini. Convex methods for robust H2 analysis of continuous time systems. IEEE Transactions on Automatic Control, 44: 239–252, 1999.MathSciNetzbMATHCrossRefGoogle Scholar
  14. [117]
    F. Paganini. Frequency domain conditions for robust H2 performance. IEEE Transactions on Automatic Control, 44: 38–49, 1999.MathSciNetzbMATHCrossRefGoogle Scholar
  15. [118]
    F. Paganini and E. Feron. LMI methods for robust H2 analysis: a survey with comparisons. In Recent Advances on LMI Methods in Control; editors L. El Ghaoui and S. Niculescu. SIAM, 1999.Google Scholar
  16. [124]
    V. M. Popov. On the absolute stability of nonlinear systems of automatic control. Automation and Remote Control, 22: 857–875, 1961.MathSciNetGoogle Scholar
  17. [131]
    A. Rantzer and A. Megretski. Tutorial on integral quadratic constraints. 1999. Preprint.Google Scholar
  18. [132]
    A. Rantzer and A. Megretskii. System analysis via integral quadratic constraints. In Proc. IEEE Conference on Decision and Control, 1994.Google Scholar
  19. [140]
    M.G. Safonov. Stability and Robustness of Multivariable Feedback Systems. MIT Press, 1980.Google Scholar
  20. [146]
    C. Scherer, P. Gahinet, and M. Chilali. Multiobjective output-feedback control via LMI-optimization. IEEE Transactions on Automatic Control, 42: 896–911, 1997.MathSciNetzbMATHCrossRefGoogle Scholar
  21. [153]
    G. Stein and M. Athans. The LQG/LTR. procedure for multivariable feedback control design. IEEE Transactions on Automatic Control, 32: 105–114, 1987.zbMATHCrossRefGoogle Scholar
  22. [155]
    A. A. Stoorvogel. The robust H2 control problem: A worst-case design. IEEE Transactions on Automatic Control, 38: 1358–1370, 1993.MathSciNetzbMATHCrossRefGoogle Scholar
  23. [158]
    M. Sznaier and J. Tierno. Is set modeling of white noise a good tool for robust H2 analysis? In Proc. IEEE Conference on Decision and Control, 1998.Google Scholar
  24. [176]
    V. A. Yakubovich. Frequency conditions for the absolute stability of control systems with several nonlinear or linear nonstationary units. Automat. Telemech., pages 5–30, 1967.Google Scholar
  25. [177]
    V. A. Yakubovich. S-procedure in nonlinear control theory. Vestnik Leningrad Univ., pages 62–77, 1971. In Russian. English translation in Vestnik Leningrad Univ. Math., (1977), 73–93.Google Scholar
  26. [179]
    K.Y. Yang, S. R. Hall, and E. Feron. Robust H2 control. In Recent Advances on LMI Methods in Control; editors L. El Ghaoui, S. Niculescu. SIAM, 1999.Google Scholar
  27. [184]
    G. Zames. Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms, and approximate inverses. IEEE Transactions on Automatic Control, 26: 301–320, 1981.MathSciNetzbMATHCrossRefGoogle Scholar
  28. [189]
    K. Zhou, K. Glover, B. Bodenheimer, and J.C. Doyle. Mixed 112 and Hoe performance objectives I: Robust performance analysis. IEEE Transactions on Automatic Control, 39: 1564–1574, 1994.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Geir E. Dullerud
    • 1
  • Fernando Paganini
    • 2
  1. 1.Department of Mechanical and Industrial EngineeringUniversity of IllinoisUrbanaUSA
  2. 2.Department of Electrical EngineeringUniversity of CaliforniaLos AngelesUSA

Personalised recommendations