Reflection and Transmission of Plane Waves

  • Nathan Ida


The propagation of waves in free space and in materials was discussed at some length in Chapter 12. In this chapter, we discuss properties of waves as they propagate through different materials and changes in their amplitudes and directions as they propagate through the interfaces between materials. This aspect of the propagation of waves is fundamental and many of the properties of waves are defined by materials and their interfaces. As an example, waves are reflected from conducting surfaces giving rise to so-called standing waves. The various properties depend on the materials involved, the direction of propagation, and the polarization of the waves. To keep the discussion simple and within the context of plane waves, we will look at a number of simple interface conditions. These include perpendicular and oblique incidences on conducting and dielectric interfaces, conditions often encountered in applications.


Reflection Coefficient Standing Wave Transmission Coefficient Electric Field Intensity Magnetic Field Intensity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Nathan Ida
    • 1
  1. 1.Department of Electrical EngineeringThe University of AkronAkronUSA

Personalised recommendations