Analogue circuit synthesis from VHDL-AMS

  • Tom J. Kazmierski
  • Fazrena A. Hamid


The paper presents the evolution of analogue synthesis techniques and present recent research results into automated analogue synthesis in the context of VHDL-AMS. The emergence of VHDL-AMS provides a basis for a new approach to analogue and mixed-signal circuit synthesis. Like digital VHDL, VHDL-AMS supports process-level parallelism and provides constructs to describe process communication and signal assignments. This gives rise to a development of architectural analogue synthesis techniques that would be analogous to the well-established methods in digital synthesis based on high-level VHDL or Verilog descriptions. Two sample synthesis systems based on VHDL-AMS, i.e. VASE and NEUSYS are presented.


Analogue Circuit Digital Circuit Hardware Description Language Synthesis Tool Analogue Integrate Circuit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E.S. Ochotta, R.A. Rutenbar, L.R. Carley, “Synthesis of High-Performance Analog Circuits in ASTRX/OBLX”, IEEE Trans. CAD, vol. 15, pp. 273–294, Mar. 1996.Google Scholar
  2. [2]
    Design Automation Standards Committee of the IEEE Computer Society, “IEEE Standard VHDL Language Reference Manual (Integrated with VHDL-AMS changes)”, IEEE Std 1076.1. July, 1999.Google Scholar
  3. [3]
    M.G.R. Degrauwe, O. Nys, J. Dijkstra, S. Bitz, B.L.A.G Goffart, E.A. Vittoz, S. Cserveny, C. Meixenberger, G.V.D.S. Stappen, H.J. Oguey, “IDAC: An Interactive Design Tool for Analog Circuts”, IEEE Journal of Solid-State Circuits, vol. 22, no. 6, pp. 1106–1115, 1987.CrossRefGoogle Scholar
  4. [4]
    H.Y. Koh, C.H. Sequin, P.R. Gray, “OPASYN: A Compiler for CMOS Operational Amplifiers”,. IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems, vol. 9, no. 2, pp. 113–125, 1990.CrossRefGoogle Scholar
  5. [5]
    H. Onodera, H. Kanbara, K. Tamaru, “Operational-amplifier compilation with performance optimization”, IEEE J. Solid-State Circuits, vol. 25, pp 466–473, Apr., 1990.Google Scholar
  6. [6]
    F. El-Turky, E.E. Perry, “BLADES: An Artificial Intelligence Approach to Analog Circuit Design”, IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems, vol. 8, no. 6, pp. 680–692, 1989.CrossRefGoogle Scholar
  7. [7]
    J.P. Harvey, M.I. Elmasry, B. Leung, “STAIC: An interactive framework for synthesizing CMOS and BiCMOS analog circuits”, IEEE Transactions on Computer-Aided Design, vol. 12, pp. 1402–1418, Nov. 1992.CrossRefGoogle Scholar
  8. [8]
    B. Antao, A. Brodersen, “ARCHGEN: Automated Synthesis of Analog Systems”, IEEE Transactions on VLSI, vol. 3, no. 2, pp. 231–244, June 1995.CrossRefGoogle Scholar
  9. [9]
    P. Oehler, C. Grimm, K.Waldschmidt, “KANDIS — A Tool for Construction of Mixed Analog/Digital Systems”, European Design Automation Conference, (Brighton, UK), Sept. 1995.Google Scholar
  10. [10]
    R. Vemuri, A. Nunez-Aldana, N. Dhanwada, A. Doboli, P. Campisi, S. Ganesan, “Analog System Performance Estimation in the VASE”, Proc. EETimes Analog And Mixed-Signal Applications Conference, pp. 65–70, July 1998.Google Scholar
  11. [11]
    G. Domenech-Asensi, T. J. Kazmierski, “Automated synthesis of high-level VHDLAMS analog descriptions”, First On Line Symposium For Electronic Engineers,Sept. 2000, Google Scholar
  12. [12]
    G. Doménech-Asensi, R. Ruiz-Merino, T J Kazmierski, “Automatic synthesis of analog systems using a VI DL-AMS to HSPICE translator”, DCIS’2000, Montpelier, Nov. 21–24 2000.Google Scholar
  13. [13]
    W. Nye, D. Riley, A. Sangiovanni-Vincentelli, A. Tits, “DELIGHT.SPICE: an optimization-based system for the design of integrated circuits”, IEEE Transaction on Computer-Aided Design, vol. 7, no. 4, pp. 501–519, April 1988.CrossRefGoogle Scholar
  14. [14]
    R. Harjani, R.Rutenbar, L. Carley, “OASYS. a framework for analog circuit synthesis”, IEEE Transaction on Computer-Aided Design, vol. 8, no. 12, pp. 1247–1266, December 1989.CrossRefGoogle Scholar
  15. [15]
    E. Ochotta, “The OASYS virtual machine: Formalizing the OASYS analog synthesis framework”, Master’s thesis, Carnegie Mellon Univ., 1989.Google Scholar
  16. [16]
    G. Gielen, H. Walscharts, W. Sansen, “Analog Circuit Design Optimization Based on Symbolic Simulation and Simulated Annealing”, IEEE Transaction on Solid-State Circuits, vol. 25, no. 3, pp. 707–713, June 1990.CrossRefGoogle Scholar
  17. [17]
    G. Gielen, K. Swings, W. Sansen, “An Intelligent Design System for Analogue Integrated Circuits”, proc. European Design Automation Conference, pp. 169–173, 1990.Google Scholar
  18. [18]
    K. Swings, G. Gielen, W. Sansen, “An intelligent analog IC design system based on manipulation of design equations”, proc. CICC, pp. 8.6.1–8. 6. 4, 1990.Google Scholar
  19. [19]
    C.A. Makris, C.M. Berrah, X. Xiao, M. Singha, A.A. Ilumoka, J. Stone, C. Toumazou, P.Y.K. Cheung, R. Spence, “CHIPAIDE: A New Approach to Analogue Integrated Circuit Design”, IEE Colloqium on ‘Analogue VLSI’, (Digest No.073), pp. 1/1–1/11, 1990.Google Scholar
  20. [20]
    P.C. Maulik, L.R. Carley, R.A. Rutenbar, “A mixed-integer nonlinear programming approach to analog circuit synthesis”, Proc. Design Automation Conf., pp. 698–703, June 1992.Google Scholar
  21. [21]
    A. Doboli, N. Dhanwada, A. Nunez-Aldana, S. Ganesan, R. Vemuri. “Behavioral Synthesis of Analog Systems using Two-Layered Design Space Exploration”, Proceedings of the 36 1h Design Automation Conference, June 1999.Google Scholar
  22. [22]
    A. Doboli, R. Vemuri, “The Definition of a VHDL-AMS Subset for Behavioral Synthesis of Analog Systems”, 1998 IEEE/VIUF International Workshop on Behavioral Modeling and Simulation (BMAS’98), Oct. 1998.Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Tom J. Kazmierski
    • 1
  • Fazrena A. Hamid
    • 1
  1. 1.Department of Electronics and Computer ScienceUniversity of SouthamptonUK

Personalised recommendations