Advertisement

A Complementarity Eigenproblem in the Stability Analysis of Finite Dimensional Elastic Systems with Frictional Contact

  • A. Pinto da Costa
  • I. N. Figueiredo
  • J. J. Júdice
  • J. A. C. Martins
Part of the Applied Optimization book series (APOP, volume 50)

Abstract

In this paper a mixed complementarity eigenproblem (MCEIP) is formulated and a method is proposed for its numerical solution. This mathematical problem is motivated by the study of divergence instabilities of static equilibrium states of finite dimensional mechanical systems with unilateral frictional contact. The complementarity eigenproblem is solved by transforming it into a non-monotone mixed complementarity problem (MCP), which is then solved by using the algorithm PATH. The proposed method is used to study some small sized examples and some large finite element problems.

Keywords

Complementarity contact friction eigenvalues instability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J.A.C. Martins, S. Barbarin, M. Raous, A. Pinto da Costa, Dynamic stability of finite dimensional linearly elastic systems with unilateral contact and Coulomb friction, Computer Methods in Applied Mechanics and Engineering, 177/3–4 (1999), 289–328.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    J.A.C. Martins, A. Pinto da Costa, Stability of finite dimensional nonlinear elastic systems with unilateral contact and friction, Int. J. Solids Structures, 37(18) (2000), 2519–2564.zbMATHCrossRefGoogle Scholar
  3. [3]
    A. Klarbring, Contact, friction, discrete mechanical structures and mathematical programming, Lecture notes for the CISM course Contact Problems: Theory, Methods, Applications, 1997.zbMATHGoogle Scholar
  4. [4]
    S.P. Dirkse, M.C. Ferris, The PATH solver: A non-monotone stabilization scheme for mixed complementarity problems, Optimization Methods and Software, 5 (1995), 123–156.CrossRefGoogle Scholar
  5. [5]
    X. Chateau, Q.S. Nguyen, Buckling of elastic structures in unilateral contact with or without friction, Eur. J. Mech. A/Solids 10(1) (1991), 71–89.MathSciNetzbMATHGoogle Scholar
  6. [6]
    P. Harker and J.S. Pang, Finite-dimensional variational inequalities and nonlinear complementarity problems: a survey of theory, algorithms and applications, Mathematical Programming, 48 (1990) 161–220.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    P. Tseng, An infeasible path-following method for monotone complementarity problems, SIAM Journal on Optimization, 7 (1997) 386–402.MathSciNetCrossRefGoogle Scholar
  8. [8]
    S. Bellavia and M. Macconi, An inexact interior point method for monotone nonlinear complementarity problems, Manuscript, Université di Firenze, 1999.Google Scholar
  9. [9]
    M. Kojima, T. Noma and A. Yoshise, Global convergence in in-feasible interior-point algorithms, Mathematical Programming, 65 (1994) 43–72.MathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    T. De Luca, F. Facchinei and C. Kanzow, A semismooth equation approach to the solution of nonlinear complementarity problems, Mathematical Programming, 75 (1996) 407–439.MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    S. Dirkse, M. Ferris, P. Preckel and T. Rutherford, The GAMS callable program library for variational and complementarity solvers, Technical Report 94–07, Computer Sciences Department, Madison, Wisconsin.Google Scholar
  12. [12]
    D. Ralph, Global convergence of damped Newton’s method for non-smooth equations via the path search, Mathematics of Operations Research, 19 (1994), 352–389.MathSciNetzbMATHCrossRefGoogle Scholar
  13. [13]
    S. Robinson, Normal maps induced by linear transformations, Mathematics of Operations Research, 17 (1992) 691–714.MathSciNetzbMATHCrossRefGoogle Scholar
  14. [14]
    R.W. Cottle, J.-S. Pang, R.E. Stone, The linear complementarity problem, Academic Press-Computer Science and Scientific Computing, 1992.Google Scholar
  15. [15]
    K.G. Murty, Linear complementarity, linear and nonlinear programming (Internet edition), 1997.Google Scholar
  16. [16]
    L. Grippo, F. Lampariello and S. Lucidi, A class of nonmonotone stabilization methods in unconstrained optimization, Numerische Mathematik, 59 (1991) 779–803.MathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    P. Alart, A. Curnier, Contact discret avec frottement: unicité de la solution —Convergence de l’algorithm, École Polytechnique Féderale de Lausanne, 1987.Google Scholar
  18. [18]
    T. Zeghloul, B. Villechaise, Phénomènes de glissements partiels découlant de l’usage de la loi de Coulomb dans un contat non lubrifié, Materiaux et Techniques —Spécial Tribologie, Décembre (1991) 10–14.Google Scholar
  19. [19]
    T. Zeghloul, B. Villechaise, Stress waves in a sliding contact, Part 1: experimental study, Proc. 22nd Leeds Lyon Symposium on Tri-bology, Lyon, 5–8 September (1995).Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • A. Pinto da Costa
    • 1
  • I. N. Figueiredo
    • 2
  • J. J. Júdice
    • 2
  • J. A. C. Martins
    • 1
  1. 1.Dep. Eng. Civil and ICISTInst. Sup. TécnicoLisboaPortugal
  2. 2.Dep. MatemáticaUniversidade de CoimbraCoimbraPortugal

Personalised recommendations