Self-Organizing Molecular Field Analysis (SOMFA): A Tool for Structure-Activity Studies

  • P. J. Winn
  • D. D. Robinson
  • W. G. Richards
Part of the Mathematical and Computational Chemistry book series (MACC)


Quantitative structure activity relations (QSAR), and three-dimensional quantitative structure-activity relations (3D-QSAR) have had a profound impact on medicinal chemistry [1–6]. The ability to produce quantitative correlations between three-dimensional properties of molecules and the biological activity of these compounds is of inestimable value in deciding upon the choice of future synthetic chemistry.


Latent Variable Electrostatic Potential Dihydrofolate Reductase Fractional Factorial Design Steric Bulk 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hansch and T. Fujita, J. Am. Chem. Soc. 86, 1616 (1964).CrossRefGoogle Scholar
  2. 2.
    Kubinyi, 3D QSAR in Drug Design: Theory, Methods and Applications, ESCOM, Leiden, (1993).Google Scholar
  3. 3.
    Kubinyi, 3D QSAR in Drug Design: Ligand-Protein Interactions and Molecular Similarity; Kluwer Academic Publishers, Dordecht (1998).Google Scholar
  4. 4.
    Kubinyi, 3D QSAR in Drug Design: Recent Advances, Kluwer Academic Publishers, Dordecht (1998).Google Scholar
  5. 5.
    H. van de Waterbeernd, Chemometric Methods in Molecular Design, Vol. 2, VCH, Weinheim (1995).CrossRefGoogle Scholar
  6. 6.
    H. van de Waterbeemd, Advanced Computer Assisted Techniques in Drug Discovery, Vol. 3, VCH, Weinheim (1995).Google Scholar
  7. 7.
    D. Robinson, P. J. Winn, P. D. Lyne, and W. G. Richards, J. Med. Chem. 43, 573 (1999).CrossRefGoogle Scholar
  8. 8.
    R. D. Cramer III, D. E. Patterson, and J. D. Bunce, J. Am. Chem. Soc.110, 5959 (1988).CrossRefGoogle Scholar
  9. 9.
    C. Good, S.-S. So, and W. G. Richards, J. Med. Chem. 36, 433 (1993).CrossRefGoogle Scholar
  10. 10.
    E. Hodgkin and W. G. Richards, Int. J. Quantum Chem. Quantum Biol. Symp. 14, 105 (1987).CrossRefGoogle Scholar
  11. 11.
    G. Burt, P. Huxley, and W. G. Richards, J. Comput. Chem. 11, 1139 (1990).CrossRefGoogle Scholar
  12. 12.
    S. M. Free Jr and J. W. Wilson, J. Med. Chem. 7, 395 (1964).CrossRefGoogle Scholar
  13. 13.
    M. Doweyko, J. Med. Chem. 31, 1396 (1988).CrossRefGoogle Scholar
  14. 14.
    M. Doweyko, and W. B. Mattes, Biochemistry 31, 9388 (1992).CrossRefGoogle Scholar
  15. 15.
    M. Doweyko, J. Med. Chem. 37, 1769 (1994).CrossRefGoogle Scholar
  16. 16.
    J. Kaminski and A. M. Doweyko, J. Med. Chem. 40, 427 (1997).CrossRefGoogle Scholar
  17. 17.
    Lemmen, T. Lengauer, and G. Klebe, J. Med. Chem. 41, 4502 (1998).CrossRefGoogle Scholar
  18. 18.
    A. Debnath, J. Med. Chem. 42, 249 (1999).CrossRefGoogle Scholar
  19. 19.
    Seri-Levi, R. Salter, S. West, and W. G. Richards, Eur. J. Med. Chem. 29, 687 (1994).CrossRefGoogle Scholar
  20. 20.
    S. R. Krystek, J. T. Hunt, P. D. Stein, and T. R. Stouch, J. Med. Chem. 38, 659 (1995).CrossRefGoogle Scholar
  21. 21.
    G. Bravi, E. Gancia, P. Mascagni, M. Pegna, R. Todeschini, and A. Zaliani, J. Comput — Aided Mol. Des. 11, 79 (1997).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • P. J. Winn
    • 1
  • D. D. Robinson
    • 1
  • W. G. Richards
    • 1
  1. 1.Physical and Theoretical Chemistry LaboratoryThe University of OxfordOxfordUK

Personalised recommendations