Skip to main content

Plastic Bending of Plates

  • Chapter
Applied Plasticity

Part of the book series: Mechanical Engineering Series ((MES))

  • 593 Accesses

Abstract

In this chapter, we shall be concerned with the yield point state of perfectly plastic plates whose thickness is small compared to the dimensions of its plane faces. The load acting on the plate is normal to its surface, and is regarded as positive if it is pointing vertically downward. The vertical displacement of the middle surface is assumed to be generally small compared to the plate thickness, and plane vertical sections are assumed to remain plane during the bending. The deformation of the plate is therefore entirely defined by the vertical displacement of its middle surface, which remains effectively unstrained during the bending. A theory based on this model is found to be satisfactory not only in the elastic range but also in the plastic range of deflections. However, when the deflection of the plate exceeds the thickness, significant membrane forces are induced by the bending, the effect of which is to enhance the load carrying capacity of the plate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson C.A. and Shield, R.T. (1966), On the Validity of the Plastic Theory of Structures for Collapse Under Highly Localized Loading, J. Appl. Mech., 23, 629.

    Article  Google Scholar 

  • Boyce, W.E. (1959), A Note on Strain-Hardening Circular Plates, J. Mech. Phys. Solids, 7, 114.

    Article  MathSciNet  MATH  Google Scholar 

  • Calladine, CR. (1968), Simple Ideas in the Large Deflection Plastic Theory of Plates and Slabs, in Engineering Plasticity (eds., J. Heyman and F. Leckie), p. 93, Cambridge University Press, UK.

    Google Scholar 

  • Chakrabarty, J. (1987), Theory of Plasticity, McGraw-Hill, New York.

    Google Scholar 

  • Chakrabarty, J. (1998), Large Deflections of a Clamped Circular Plate Pressed by a Hemispherical-Headed Punch, Metals and Materials, 4, 680.

    Article  Google Scholar 

  • Cinquini, C, Lamblin, D., and Guerlement, G. (1977), Variational Formulation of the Optimal Plastic Design of Circular Plates, Computer Methods Appl. Mech. Engng., 11, 19.

    Article  MathSciNet  MATH  Google Scholar 

  • Cinquini, C and Zanon, P. (1985), Limit Analysis of Circular and Annular Plates, Ingenieur-Archiv, 55, 157.

    Article  MATH  Google Scholar 

  • Collins, I.F. (1971), On the Analogy Between Plane Strain and Plate Bending Solutions in Rigid/perfectly Plasticity Theory, Int. J. Solids Struct., 7, 1037.

    Article  Google Scholar 

  • Collins, I.F. (1973), On the Theory of Rigid/Perfectly Plastic Plates Under Uniformly Distributed Loads, Acta Mech., 18, 233.

    Article  MATH  Google Scholar 

  • Drucker, D.C and Hopkins, H.G. (1954), Combined Concentrated and Distributed Load on Ideally Plastic Circular Plates, Proc. 2nd US Nat. Congr. Appl. Mech. (Ann Arbor), p. 517.

    Google Scholar 

  • Drucker, D.C. and Shield, R.T. (1957), Bounds on Minimum Weight Design, Quart. Appl. Math., 15, 269.

    MathSciNet  MATH  Google Scholar 

  • Eason, G. (1958), Velocity Fields for Circular Plates with the von Mises Yield Condition, J. Mech. Phys. Solids, 6, 231.

    Article  MathSciNet  MATH  Google Scholar 

  • Eason, G. (1960), The Minimum Weight Design of Circular Sandwich Plates, Z. Angew. Math. Phys., 11, 368.

    Article  MathSciNet  MATH  Google Scholar 

  • Eason, G. (1961), The Elastic-Plastic Bending of a Simply Supported Plate, J. Appl. Mech., 28, 395.

    Article  MathSciNet  MATH  Google Scholar 

  • Freiberger, W. and Tekinalp, B. (1956), Minimum Weight Design of Circular Plates, J. Mech. Phys. Solids, 4, 294.

    Article  MathSciNet  MATH  Google Scholar 

  • Haddow, J.B. (1969), Yield Point Loading Curves for Circular Plates, Int. J. Mech. Sci., 11, 455.

    Article  Google Scholar 

  • Haythornthwaite, R.M. (1954), The Deflection of Plates in the Elastic-Plastic Range, Proc. US Nat. Congr. Appl. Mech. (Ann Arbor), p. 521.

    Google Scholar 

  • Haythornthwaite, R.M. and Shield, R.T. (1958), A Note on the Deformable Region in a Rigid-Plastic Structure, J. Mech. Phys. Solids, 6, 127.

    Article  MathSciNet  MATH  Google Scholar 

  • Hodge, P.G. (1963), Plastic Analysis of Rotationally Symmetric Plates and Shells, Prentice Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Hodge, P.G. (1964), Plastic Plate Theory, Quart. Appl. Math.,12, 74.

    MathSciNet  Google Scholar 

  • Hodge, P.G. (1981), Plastic Analysis of Structures, Chap. 10, Krieger, New York.

    Google Scholar 

  • Hodge, P.G. and Belytschko, T. (1968), Numerical Methods for the Limit Analysis of Plates, J. Appl. Mech., 35, 196.

    Google Scholar 

  • Hodge, P.G. and Sankaranarayanan, S. (1960), Plastic Interaction Curves of Annular Plates in Tension and Bending, J. Mech. Phys. Solids, 8, 153.

    Article  MathSciNet  MATH  Google Scholar 

  • Hopkins, H.G. (1957), On the Plastic Theory of Plates, Proc. Roy. Soc. London Ser. A 241, 153.

    Article  MathSciNet  MATH  Google Scholar 

  • Hopkins, H.G. and Prager, W. (1953), The Load Carrying Capacity of Circular Plates, J. Mech. Phys. Solids, 2, 1.

    Article  MathSciNet  Google Scholar 

  • Hopkins, H.G. and Prager, W. (1955), Limits of Economy of Material in Plates, J. Appl. Mech. y Trans. ASME, 22, 372.

    MATH  Google Scholar 

  • Hopkins, H.G. and Wang, A.J. (1955), Load Carrying Capacities of Circular Plates of Perfectly-Plastic Material with Arbitrary Yield Condition, J. Mech. Phys. Solids, 3, 117.

    Article  MathSciNet  Google Scholar 

  • Johansen, K.W. (1943), Brudlinieteorier, Gjellerup, Copenhagen.

    Google Scholar 

  • Johnson, W. (1969), Upper Bounds to the Load for the Transverse Bending of Flat Rigid Perfectly Plastic Plates, Int. J. Mech. Sci., 11, 913.

    Article  Google Scholar 

  • Johnson, W. and Mellor, P.B. (1983), Engineering Plasticity, Ellis Horwood, Chichester, UK.

    Google Scholar 

  • Jones, L.L. and Wood, R.H. (1967), Yield Line Analysis of Slabs, Thames and Hudson, London.

    Google Scholar 

  • Kondo, K. and Pian, T.H.H. (1981), Large Deformation of Rigid/Plastic Circular Plates, Int. J. Solids Struct., 17, 1043.

    Article  MATH  Google Scholar 

  • König, J.A. and Rychlewsky, R. (1966), Limit Analysis of Circular Plates with Jump Nonhomogeneity, Int. J. Solids Struct, 2, 493.

    Article  Google Scholar 

  • Koopman, D.C.A. and Lance, R.H. (1965), On Linear Programming and Plastic Limit Analysis, J. Mech. Phys. Solids, 13, 77.

    Article  Google Scholar 

  • Kozlowski, W. and Mröz, Z. (1969), Optimal Design of Solid Plates, Int. J. Solids Struct., 5, 781.

    Article  Google Scholar 

  • Krajcinovic, D. (1976), Rigid-Plastic Circular Plates on Elastic Foundation, J. Engng. Mech. Div., Trans. ASCE, 102, 213.

    Google Scholar 

  • Lance, R.H. and Onat, E.T. (1962), A Comparison of Experiments and Theory in the Plastic Bending of Plates, J. Mech. Phys. Solids, 10, 301.

    Article  Google Scholar 

  • Maftolakos, D.E. and Mamalis, A.G. (1986), Upper and Lower Bounds for Rectangular Plates Transversely Loaded, Int. J. Mech. Sci., 12, 815.

    Article  Google Scholar 

  • Mansfield, E.H. (1957), Studies in Collapse Analysis of Rigid-Plastic Plates with a Square Yield Diagram, Proc. Roy. Soc. London Sen A 241, 311.

    Article  MathSciNet  MATH  Google Scholar 

  • Marcal, P.V. (1967), Optimal Plastic Design of Circular Plates, Int. J. Solids Struct., 3, 427.

    Article  Google Scholar 

  • Massonnet, C.E. (1967), Complete Solutions Describing the Limit State in Reinforced Concrete Slabs, Mag. Conc. Res., 19, 58.

    Article  Google Scholar 

  • Mazumdar, J. and Jain, R.K. (1989), Elastic-Plastic Bending of Plates of Arbitrary Shape— A New Approach, Int. J. Plasticity, 5, 463.

    Article  MATH  Google Scholar 

  • Mröz, Z. (1961), On a Problem of Minimum Weight Design, Quart. Appl Math., 19, 3.

    Google Scholar 

  • Myszkowsky, J. (1971), Endliche Durchbiegungen Beliebig Eigenspannter Dünner Kreis, Ingenieur-Archiv, 40, 1.

    Article  Google Scholar 

  • Naghdi, P.M. (1952), Bending of Elastoplastic Circular Plate with Large Deflection, J. Appl Mech., 19, 293.

    MATH  Google Scholar 

  • Nemirovsky, U.V. (1962), Carrying Capacity of Rib-Reinforced Circular Plates (in Russian), Izv. Nauk. USSR, Mekh. Mack, 2, 163.

    Google Scholar 

  • Oblak, M. (1986), Elastoplastic Bending Analysis for Thick Plate, Z. Angew. Math. Mech., 66, 320.

    Article  Google Scholar 

  • Ohashi, Y, and Kamiya, N. (1967), Bending of Thin Plates of Material with a Nonlinear Stress-Strain Relation, Int. J. Mech. Sci., 9, 183.

    Article  Google Scholar 

  • Ohashi, Y and Kawashima, I. (1969), On The Residual Deformation of Elastoplastically Bent Circular Plate After Perfect Unloading, Z. Angew. Math. Mech., 49, 275.

    Article  MATH  Google Scholar 

  • Ohashi, Y and Murakami, S. (1964), The Elasto-Plastic Bending of a Clamped Thin Circular Plate, Proc. 11th Int. Conf. Appl. Mech., p. 212.

    Google Scholar 

  • Ohashi, Y and Murakami, S. (1966), Large Deflection of Elastoplastic Bending of a Simply Supported Circular Plate Under a Uniform Load, J. Appl. Mech., Trans. ASME, 33, 866.

    Article  Google Scholar 

  • Onat, E.T. and Haythornthwaite, R.M. (1956), The Load Carrying Capacity of Circular Plates at Large Deflections, J. Appl. Mech., 23, 49.

    MATH  Google Scholar 

  • Onat, E.T., Schumann, W., and Shield, R.T. (1957), Design of Circular Plates for Minimum Weight, Z Angew. Math. Phys., 8, 485.

    Article  MathSciNet  MATH  Google Scholar 

  • Pell, W.H. and Prager, W. (1951), Limit Design of Plates, Proc. 1st US Nat. Congr. Appl. Mech. (Chicago), p. 547.

    Google Scholar 

  • Popov, E.P., Khojestch-Bakht, M, and Yaghmai, S. (1967), Analysis of Elastic-Plastic Circular Plates, J. Engng. Mech. Div., Trans. ASCE, 93, 49.

    Google Scholar 

  • Prager, W. (1955), Minimum Weight Design of Plates, De. Ingenieur (Amsterdam), 67, 141.

    Google Scholar 

  • Prager, W. (1956a), The General Theory of Limit Design, Proc. 8th Int. Congr. Appl. Mech. (Istanbul, 1952), Vol. 2, p. 65.

    MathSciNet  Google Scholar 

  • Prager, W. (1956b), A New Method of Analyzing Stresses and Strains in Work-Hardening Plastic Solids, J. Appl Mech., 23, 493.

    MathSciNet  MATH  Google Scholar 

  • Prager, W. (1959), An Introduction to Plasticity, Chap. 3, Addison-Wesley, Reading, MA.

    Google Scholar 

  • Prager, W. and Shield, R.T. (1959), Minimum Weight Design of Circular Plates Under Arbitrary Loading, Z. Angew. Math. Phys., 10, 421.

    Article  MathSciNet  Google Scholar 

  • Save, M.A. and Massonnet, C.E. (1972), Plastic Analysis and Design of Plates, Shells and Disks, North-Holland, Amsterdam.

    MATH  Google Scholar 

  • Sawczuk, A. (1989), Mechanics and Plasticity of Structures, Ellis Horwood, Chichester.

    MATH  Google Scholar 

  • Sawczuk, A. and Duszek, M. (1963), A Note on the Interaction of Shear and Bending in Plastic Plates, Arch. Mech. Stos., 15, 411.

    MathSciNet  MATH  Google Scholar 

  • Sawczuk, A. and Hodge, P.G. (1968), Limit Analysis and Yield Line Theory, J. Appl. Mech., Trans. ASME, 35, 357.

    Article  Google Scholar 

  • Sawczuk, A. and Jaeger, T. (1963), Grenztragfähigkeits Theorie der Platten, Springer-Verlag, Berlin.

    Book  MATH  Google Scholar 

  • Sheu, C.Y. and Prager, W. (1969), Optimal Plastic Design of Circular and Annular Plates with Piecewise Constant Cross Section, J. Mech. Phys. Solids, 17, 11.

    Article  MATH  Google Scholar 

  • Schumann, W (1958), On Limit Analysis of Plates, Quart. Appl. Math., 16, 61.

    MathSciNet  MATH  Google Scholar 

  • Sherbourne, A.N. and Srivastava, A. (1971), Elastic-Plastic Bending of Restrained Pin-Ended Circular Plates, Int. J. Mech. Sci., 13, 231.

    Article  Google Scholar 

  • Shield, R.T. (1960), Plate Design for Minimum Weight, Quart. Appl. Math., 18, 131.

    MathSciNet  MATH  Google Scholar 

  • Shield, R.T. (1963), Optimum Design Methods for Multiple Loading, Z. Angew. Math. Phys.,14, 38.

    Article  MathSciNet  MATH  Google Scholar 

  • Shull, H.E. and Hu, L.W. (1963), Load Carrying Capacity of Simply Supported Rectangular Plates, J. Appl. Mech., 30, 617.

    Article  Google Scholar 

  • Skrzypek, J.J. and Hetnarski, R.B. (1993), Plasticity and Creep: Theory, Examples and Problems, CRC Press, Boca Raton, Florida.

    MATH  Google Scholar 

  • Sobotka, Z. (1989), Theory of Plasticity and Limit Design of Plates, Academia, Prague.

    MATH  Google Scholar 

  • Sokolovsky, W.W. (1948), Elastic-Plastic Bending of Circular and Annular Plates (in Russian), Prikl. Mat. Mekh., 8, 141.

    MathSciNet  Google Scholar 

  • Sokolovsky, W.W. (1969), Theory of Plasticity (in Russian), 3rd ed., Nauka, Moscow.

    Google Scholar 

  • Tanaka, M. (1972), Large Deflection Analysis of Elastic-Plastic Circular Plates with Combined Isotropic and Kinematic Hardening, Ingenieur-Archiv, 41, 342.

    Article  MATH  Google Scholar 

  • Tekinalp, B. (1957), Elastic-Plastic Bending of a Built-in Circular Plate Under Uniformly Distributed Load, J. Mech. Phys. Solids, 5, 135.

    Article  MathSciNet  Google Scholar 

  • Turvey, G.J. (1979), Thickness-Tapered Circular Plates—An Elastic-Plastic Large Deflection Analysis, J. Struct. Mech., Trans. ASCE, 7, 247.

    Article  Google Scholar 

  • Yu, T.X. and Johnson, W (1982), The Large Elastic-Plastic Deflection with Springback of a Circular Plate Subjected to Circumferential Moments, J. Appl. Mech., 49, 507.

    Article  MATH  Google Scholar 

  • Yu, T.X., Johnson, W, and Stronge, W.J. (1984), Stamping and Springback of Circular Plates Deformed in Hemispherical Dies, Int. J. Mech. Sci., 26, 131.

    Article  Google Scholar 

  • Yu, T.X. and Stronge, W.J. (1985), Wrinkling of a Circular Plate Stamped by a Spherical Punch, Int. J. Solid Struct., 21, 995.

    Article  Google Scholar 

  • Zaid, M. (1959), On the Carrying Capacity of Plates of Arbitrary Shape and Variable Fixity Under a Concentrated Load, J. Appl. Mech., 26.

    Google Scholar 

  • Zhang, L.C. and Yu, T.X. (1991), An Experimental Investigation on Stamping of Elastic-Plastic Circular Plates, J. Mater. Process. Technol, 28, 321.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chakrabarty, J. (2000). Plastic Bending of Plates. In: Applied Plasticity. Mechanical Engineering Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-3268-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3268-9_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-3270-2

  • Online ISBN: 978-1-4757-3268-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics