Skip to main content

Genetics of Temperate Bacteriophages

  • Chapter
Bacterial and Bacteriophage Genetics

Abstract

For all bacteriophages discussed in the preceding chapters, a successful phage infection always results in the immediate production of progeny virions. However, many bacteriophages are known for which there is an alternative outcome to phage infection. Instead of the customary unrestrained DNA replication and phage assembly, there is a temperate response in which a bacteriophage sets up housekeeping within a bacterial cell and maintains a stable relationship with that cell and all its progeny for many generations. The varied ways in which the temperate response can be accomplished are the subject of this chapter. The physical properties of the temperate bacteriophages discussed in this chapter are summarized in Table 8.1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

General

  • Botstein, D. (1980). A theory of modular evolution for bacteriophages. Annals of the New York Academy of Sciences 354: 484–491.

    Article  PubMed  CAS  Google Scholar 

  • Hendrix, R.W., Duda, R.L. (1992). Bacteriophage λPaPa: Not the mother of all λ phages. Science 258: 1145–1148.

    Article  PubMed  CAS  Google Scholar 

  • Howe, M.M. (1998). Bacteriophage Mu, pp. 65–80. In: Busby, S.J.W., Thomas, G.M., Brown, N.L. (eds.), NATO ASI Series, Vol. 103 Molecular Microbiology. Berlin: Springer-Verlag.

    Google Scholar 

  • Lindqvist, B.H., Dehò, G., Calendar, R. (1993). Mechanisms of genome propagation and helper exploitation by satellite phage P4. Microbiological Reviews 57: 683–702.

    PubMed  CAS  Google Scholar 

  • Symonds, N., Toussaint, A., van de Putte, P., Howe, M.M. (eds.) (1987). Phage Mu. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.

    Google Scholar 

  • Weisberg, R.A., Gottesman, M.E. (1999) Processive antitermination. Journal of Bacteriology 181: 359–367.

    PubMed  CAS  Google Scholar 

Specialized

  • Arens, J.S., Hang, Q., Hwang, Y., Tuma, B., Max, S., Feiss, M. (1999). Mutations that extend the specificity of the endonuclease activity of lambda terminase. Journal of Bacteriology 181: 218–224.

    PubMed  CAS  Google Scholar 

  • Arkin, A., Ross, J., McAdams, H.H. (1998). Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells. Genetics 149: 1633–1648.

    PubMed  CAS  Google Scholar 

  • Basak, S., Nagaraja, V. (1998). Transcriptional activator C protein-mediated unwinding of DNA as a possible mechanism for non gene activation. Journal of Molecular Biology 284: 893–902.

    Article  PubMed  CAS  Google Scholar 

  • Casjens, S., Sampson, L., Randall, S. (1992). Molecular genetic analysis of bacteriophage P22 gene 3 product, a protein involved in the initiation of headful DNA packaging. Journal of Nolecular Biology 227: 1086–1099.

    Article  CAS  Google Scholar 

  • Dehò, G., Zangrossi, S., Sabbattini, P., Sironi, G., Ghisotti, D., (1992). Bacteriophage P4 immunity controlled by small RNAs via transcription termination.Molecular Microbiology 6: 3415–3425.

    Article  PubMed  Google Scholar 

  • Ko, D.C., Marr, M.T., Guo, T.S., Roberts, J.W. (1998). A surface of Escherichia coli σ 70 required for promoter function and antitermination by phage lambda Q protein. Genes & Development 12: 3276–3285.

    Article  CAS  Google Scholar 

  • Liu, T., Renberg, S.K., Haggard-Ljungquist, E. (1997). Derepression of prophage P2 by satellite phage P4: Cloning of the P4 epsilon gene and identification of its product. Journal of Virology 71: 4502–4508.

    PubMed  CAS  Google Scholar 

  • Liu, T., Renberg, S.K., Haggard-Ljungquist, E. (1998). The E protein of satellite phage P4 acts as an antirepressor by binding to the C protein of helper phage P2. Molecular Microbiology 30: 1041–1050.

    Article  PubMed  CAS  Google Scholar 

  • Parker, M.H., Prevelige, P.E. (1998). Electrostatic interactions drive scaffolding/coat protein binding and procapsid maturation in bacteriophage P22. Virology 250: 3 37–349.

    Google Scholar 

  • Reiter, K., Lam, H., Young, E., Julien, B., Calendar, R. (1998). A complex control system for transcriptional activation from the sid promoter of bacteriphage P4. Journal of Bacteriology 180: 5151–5158.

    PubMed  CAS  Google Scholar 

  • Shean, C.S., Gottesman, M.E. (1992). Translation of the prophage λ cI transcript. Cell 70: 513–522. (A demonstration of the role of a downstream box in regulating translation efficiency.)

    Article  PubMed  CAS  Google Scholar 

  • Smith, D.L., Young, R. (1998). Oligohistidine tag mutagenesis of the lambda holin gene. Journal of Bacteriology 180: 4199–4211.

    PubMed  CAS  Google Scholar 

  • Szalewska-Palasz, A.,, Wegrzyn, A., Blaszczak, A., Taylor, K., Wegrzyn, G. (1998a). DnaA-stimulated transcriptional activation of ori lambda: Escherichia coli RNA polymerase β subunit as a transcriptional contact site. Proceedings of the National Academy of Sciences of the USA 95: 4241–4246.

    Article  PubMed  CAS  Google Scholar 

  • Szalewska-Palasz, A., Weigel, C., Speck, C., Srutkowska, S., Konopa, G., Lurz, R., Marszalek, J., Taylor, K., Messer, W., Wegrzyn, G. (1998b). Interaction of the Escherichia coli DnaA protein with bacteriophage λ DNA. Molecular and General Genetics 259: 679–688.

    Article  PubMed  CAS  Google Scholar 

  • Yamauchi, M., Baker, T.A. (1998). An ATP-ADP switch in MuB controls progression of the Mu transposition pathway. TheEMBOJournal 17: 5509–5518.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Birge, E.A. (2000). Genetics of Temperate Bacteriophages. In: Bacterial and Bacteriophage Genetics. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-3258-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3258-0_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-3260-3

  • Online ISBN: 978-1-4757-3258-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics