Genetics of Other Intemperate Bacteriophages

  • Edward A. Birge


Bacteriophage T4 has probably been the most intensively investigated intemperate virus, but there are many other viruses that have also been the subject of considerable study. In this chapter, descriptions of selected bacteriophages are presented to illustrate the high degree of genetic diversity available to a bacterial geneticist and to provide comparisons of these phages to each other and to T4. To facilitate these comparisons, the physical properties of each phage discussed in this chapter are summarized in Table 7.1. Yeast viruses are not considered because, like all fungal viruses, they are transmitted only by cell fusion and do not spend any portion of their life cycle in an independent state.


Coat Protein Replicative Form Tail Fiber Rolling Circle Replication Replicase Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. Ackerman, H.W., Krisch, H.M. (1997). A catalogue of T4-type bacteriophages. Archives of Virology 142: 2329–2345.CrossRefGoogle Scholar
  2. Calendar, R. (ed.) (1988). The Bacteriophages. New York: Plenum Press (Detailed discussions for all viruses discussed in this chapter.)Google Scholar
  3. Novick, R.P. (1998). Contrasting lifestyles of rolling-circle phages and plasmids. Trends in Biochemical Sciences 23: 434–438.PubMedCrossRefGoogle Scholar
  4. Rojo, F., Mencía, M., Monsalve, M., Salas, M. (1998). Transcription activation and repression by interaction of a regulator with the α subunit of RNA polymerase: The model of phage Φ29 protein p4. Progress in Nucleic Acid Research 60: 29–46.CrossRefGoogle Scholar
  5. De Smit, M.H., van Duin, J. (1990). Control of prokaryotic translational initiation by mRNA secondary structure. Progress in Nucleic Acid Research and Nlolecular Biology 38: 1–35.CrossRefGoogle Scholar
  6. Young, R. (1992). Bacteriophage lysis: Mechanism and regulation. Microbiological Reviews 56: 430–481. (Detailed presentation of the two major lytic processes used by bacterial viruses.)PubMedGoogle Scholar


  1. Bonhivers, M., Plancon, L., Ghazi, A., Boulanger, P., le Maire, M., Lambert, O., Rigaud, J.L., Letellier, L. (1998). FhuA, an Escherichia coli outer membrane protein with a dual function of transporter and channel which mediates the transport of phage DNA. Biochimie 80: 363–369.PubMedCrossRefGoogle Scholar
  2. Chen, C., Guo, P. (1997). Sequential action of six virus-encoded DNA-packaging RNAs during phage Φ29 genomic DNA translocation. Journal of Virology 71: 3864–3871.PubMedGoogle Scholar
  3. Click, E.M., Webster, R.E. (1998). The ToIQRA proteins are required for membrane insertion of the major capsid protein of the filamentous phage f 1 during infection. Journal of Bacteriology 180: 1723–1728.PubMedGoogle Scholar
  4. Dokland, T., McKenna, R., Ilag, L.L., Bowman, B.R., Incardon, N.L., Fane, B.A., Rossmann, M.G. (1997). Structure of a viral procapsid with molecular scaffolding. Nature 389: 308–313.PubMedCrossRefGoogle Scholar
  5. Dunker, A.K. Ensign, L.D. Arnold, G.E., Roberts, L.M. (1991). A model for fd phage penetration and assembly. FEBBS Letters 292: 271–274.CrossRefGoogle Scholar
  6. Endy, D., Kong, D., Yin, J. (1997). Intracellular kinetics of a growing virus: A genetically structured simulation for bacteriophage T7. Biotechnology and Bioengineering 55: 375–389.PubMedCrossRefGoogle Scholar
  7. Gary, T.P., Colowick, N.E., Mosig, G. (1998). A species barrier between bacteriophages T2 and T4: Exclusion, join-copy and join-cut-copy recombination and mutagenesis in the dCTPase genes. Genetics 148: 1461–1473.PubMedGoogle Scholar
  8. Guihard, G.B., Letellier, P., Letellier, L. (1992). Involvement of phage T5 tail proteins and contact sites between the outer and inner membrane of Escherichia coli in phage T5 DNA injection. Journal of Biological Chemistry 267: 3173–3178.PubMedGoogle Scholar
  9. Haigh, N.G., Webster, R.E. (1998). The major coat protein of filamentous bacteriophage f 1 specifically pairs in the bacterial cytoplasmic membrane. Journal of Molecular Biology 279: 19–29.PubMedCrossRefGoogle Scholar
  10. Halfmann, G., Götz, F., Lubitz, W. (1993). Expression of bacteriophage ΦX174 lysis gene E in Staphylococcus carnosus TM300. FEMS Microbiology Letters 108: 139–144.CrossRefGoogle Scholar
  11. Klovins, J., van Duin, J., Olsthoorn, R.C.L. (1997). Rescue of the RNA phage genome from RNase III cleavage. Nucleic Acids Research 25: 4201–4208.PubMedCrossRefGoogle Scholar
  12. Monsalve, M., Calles, B., Mencía, M., Rojo, F., Salas, M. (1998). Binding of phage Φ29 protein p4 to the early A2c promoter: Recruitiment of a repressor by the RNA polymerase. Journal of Molecular Biology 283: 559–569.PubMedCrossRefGoogle Scholar
  13. Monod, C., Repoila, F., Kutateladze, M., Tetart, F., Krisch, H.M. (1997). The genome of the pseudo T even bacteriophages, a diverse group that resembles T4. Journal of Molecular Biology 267: 237–249f.PubMedCrossRefGoogle Scholar
  14. Poot, R.A., Tsareva, N.V., Boni, I.V., van Duin, J. (1997). RNA folding kinetics regulates translation of phage MS2 maturation gene. Proceedings of the National Academy of Sciences of the USA 94: 10110–10115.PubMedCrossRefGoogle Scholar
  15. Rajagopal, B.S., Reilly, B.E., Anderson, D.L. (1993). Bacillus subtilis mutants defective in bacteriophage Φ29 head assembly. Journal of Bacteriology175: 2357–2362.PubMedGoogle Scholar
  16. Robertson, E.S., Nicholson, A.W. (1992). Phosphorylation of Escherichia coli translation initiation factors by the bacteriophage T7 protein kinase. Biochemistry 31: 4822–4827.PubMedCrossRefGoogle Scholar
  17. Scarlato, V., Gargano, S. (1992). The DNA polymerase-encoding gene of Bacillus subtilis bacteriophage SP01. Gene 118: 109–113.PubMedCrossRefGoogle Scholar
  18. Scarlato, V., Greene, J.R., Geiduschek, E.P. (1991). Bacteriophage SPO i middle transcripts. Virology180: 716–728.PubMedCrossRefGoogle Scholar
  19. Serrano, M., Gutierrez, C., Salas, M., Hermoso, J.M. (1993). Superhelical path of the DNA in the nucleoprotein complex that activates the initiation of phage Φ29 DNA replication. Journal of Molecular Biology 230: 248–259.PubMedCrossRefGoogle Scholar
  20. Schuppli, D., Miranda, G., Qiu, S., Weber, H. (1997). A branched stem-loop structure in the M-site of bacteriophage Qβ RNA is important for template recognition by Qβ replicase holoenzyme. Journal of Molecular Biology 283: 585–593.CrossRefGoogle Scholar
  21. Serwer, P., Watson, R.H., Hayes, S. J. (1992). Formation of the right before the left mature DNA end during packaging-cleavage of bacteriophage T7 DNA concatemers. Journal of .Molecular Biology 226: 311–317.PubMedCrossRefGoogle Scholar
  22. Sousa, R., Patra, D., Lafer, E.M. (1992). Model for the mechanism of bacteriophage T7 RNAP transcription initiation and termination. Journal of Molecular Biology 224: 319–334.PubMedCrossRefGoogle Scholar
  23. Stewart, C.R., Gaslightwala, I., Hinata, K., Krolikowski, K.A., Needleman, D.S., Peng, A.S., Peterman, M.A., Tobias, A., Wei, P. (1998). Genes and regulatory sites of the “host takeover module” in the terminal redundancy of Bacillus subtilis bacteriophage SP01. Virology 246: 329–340.PubMedCrossRefGoogle Scholar
  24. Su, Q., Schuppli, D., Tsui, H.T., Winkler, M.E., Weber, H. (1997). Strongly reduced phage Qβ replication, but normal phage MS2 replication in an Escherichia coli K 12 mutant with inactivated Qβ host factor (hf q) gene. Virology 227: 211–214.PubMedCrossRefGoogle Scholar
  25. Tetart, F., Desplats, C., Krisch, H.M. (1998). Genome plasticity in the distal tail fiber locus of the T even bacteriophage: Recombination between conserved motifs swaps adhesin specificity. Journal of Molecular Biology 282: 543–556.PubMedCrossRefGoogle Scholar
  26. Witte, A., Brand, E., Mayrhofer, P., Narendja, F, Lubitz, W. (1998). Archives of Microbiology 170: 259–268.PubMedCrossRefGoogle Scholar
  27. Zaman, G., Smetsers, A., Kaan, A., Schoenmaters, J., Konings, R. (1991). Regulation of expression of the genome of bacteriophage M13. Gene V protein regulated translation of the mRNAs encoded by genes I, III, V and X. Biochimica et Biophysica Acta 1089: 183–192.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Edward A. Birge
    • 1
  1. 1.Department of MicrobiologyArizona State UniversityTempeUSA

Personalised recommendations