Skip to main content

Estimates of Whole Lake Metabolism: Hypolimnetic Oxygen Deficits and Carbon Dioxide Accumulation

  • Chapter
Limnological Analyses

Abstract

Measurements of the supply of organic matter to aquatic ecosystems are complex and require an elaborate research program continuing over at least a year. The inputs from the products of photosynthesis of autotrophic phytoplankton and of littoral flora must be evaluated, as well as the inputs from allochthonous organic matter entering the aquatic ecosystem from the atmosphere and from the drainage basin.

Assuming that the allochthonous inputs of organic matter are small in relation to those synthesized within a lake, and that the lake is sufficiently large to stratify thermally, the autotrophic productivity can be estimated indirectly from long-term changes in either hypolimnetic oxygen deficits or accumulations of dissolved inorganic carbon (DIC).The assumption is that organic matter, which was synthesized in the trophogenic zone, sinks into the hypolimnetic zone and decomposes there. Changes in oxygen or DIC concentrations of the hypolimnetic water reflect the rates of loading of organic matter and of decomposition. However, the relationships are not so tidy in nature. Several major reactions in the development of an anaerobic hypolimnion are related to the decomposition of organic matter [see Wetzel (1983, 1999) and Schindler (1985)]. These reactions are based on a simplified molecule for organic matter of planktonic material:*

The procedures given in this exercise are appropriate for lakes where methanogenesis is the primary decomposition pathway, and the dominant anion in the hypolimnion is bicarbonate. Other confounding problems include, for example, decomposition in the epilimnion, turbulent exchange between the stratified water layers, and photosynthesis in the hypolimnion. Nonetheless, a general, direct relationship does exist between autotrophic productivity and hypolimnetic changes. The advantages of these approaches are that they provide whole ecosystem values and integrate diverse processes of production and decomposition of organic matter. The approaches treated here obviously are not applicable to lakes that do not stratify or to those that are stratified permanently (i.e., meromictic lakes).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Einsele, W. 1941. Die Umsetzung von zugeführtem, anorganischen Phosphat im eutrophen See und ihre Rückwirkungen auf seinen Gesamthaushalt. Zeitsch. f. Fischerei 59:407–488.

    Google Scholar 

  • Godshalk, G.L. and R.G. Wetzel. 1977. Decomposition of macrophytes and the metabolism of organic mater in sediments, pp. 258–264. In: H.L. Golterman, Editor. Interactions between Sediments and Freshwater. Dr. W. Junk B.V., The Hague.

    Google Scholar 

  • Hutchinson, G.E. 1957. A Treatise on Limnology. Vol. I. Geography, Physics, and Chemistry, Wiley, New York. 1015 pp.

    Google Scholar 

  • Ohle, W. 1934. Chemische und physikalische Untersuchungen norddeutscher Seen. Arch. Hydrobiol. 26:386–464, 584–658.

    CAS  Google Scholar 

  • Ohle, W. 1952. Die hypolimnische Kohlendioxyd-Akkumulation als productions-biologischer Indikator. Arch. Hydrobiol. 46:153–285.

    Google Scholar 

  • Ohle, W. 1956. Bioactivity, production, and energy utilization of lakes. Limnol. Oceanogr. 1:139–149.

    Article  Google Scholar 

  • Redfield, A.C. 1958. The biological control of chemical factors in the environment. Amer. Sci. 46:206–226.

    Google Scholar 

  • Rich, P.H. 1975. Benthic metabolism of a soft water lake. Verh. Int. Ver. Limnol. 19:1023–1028.

    Google Scholar 

  • Rich, P.H. 1983. Differential CO2 and O2 benthic community metabolism in a softwater lake. J. Fish. Res. Bd. Canada 36:1377–1389.

    Article  Google Scholar 

  • Rich, P.H. 1984. Further analysis of respiration in a North American lake ecosystem. Verh. Int. Verein. Limnol. 22:542–548.

    Google Scholar 

  • Rich, P.H. and R.G. Wetzel. 1978. Detritus in the lake ecosystem. Amer. Naturalist 112:57–71.

    Article  Google Scholar 

  • Ruttner, F. 1931. Hydrographische und hydrochemische Beobachtungen auf Java, Sumatra und Bali. Arch. Hydrobiol. Suppl. 8:197–454.

    Google Scholar 

  • Schindler, D.W. 1985. The coupling of elemental cycles by organisms: Evidence from whole-lake chemical perturbations, pp. 225–250. In: W. Stumm, Editor. Chemical Processes in Lakes. Wiley, New York.

    Google Scholar 

  • Vollenweider, R. A. 1985. Elemental and biochemical composition of plankton biomass; some comments and explorations. Arch. Hydrobiol. 105:11–29.

    CAS  Google Scholar 

  • Wetzel, R.G. 1983. Limnology. 2nd Ed. Saunders Coll., Philadelphia. 860 pp.

    Google Scholar 

  • Wetzel, R.G. 1990. Land-water interfaces: Metabolic and limnological regulators. Baldi Memorial Lecture. Verh. Int. Verein. Limnol. 24:6–24.

    Google Scholar 

  • Wetzel, R.G. 1999. Limnology: Lake and River Ecosystems. 3rd Ed. Academic Press, San Diego (in press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wetzel, R.G., Likens, G.E. (2000). Estimates of Whole Lake Metabolism: Hypolimnetic Oxygen Deficits and Carbon Dioxide Accumulation. In: Limnological Analyses. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-3250-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3250-4_29

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-3186-3

  • Online ISBN: 978-1-4757-3250-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics