Skip to main content

Primary Productivity of Phytoplankton

  • Chapter
Limnological Analyses

Abstract

Although appreciable quantities of organic matter synthesized by terrestrial plants within the drainage basin can be transported to freshwater ecosystems in either dissolved or particulate forms (allochthonous primary productivity), much of the organic matter of lakes is produced within the lake by phytoplanktonic algae, by littoral macrophytic vegetation, and by sessile algae (autochthonous primary productivity). In situ rates of photosynthesis by phytoplankton are the subject of this exercise; those of other plant forms will be treated separately in Exercise 22.

It is a distinct advantage to measure rates of metabolism directly in situ since extrapolation of laboratory results to natural conditions is usually difficult. When the rates of synthesis of organic matter and changes in primary production can be measured over time, efforts can be directed to the experimental evaluation of causal mechanisms regulating the synthesis, utilization, and loss of the organic matter.

The complex biochemical reactions of photosynthesis can be summarized by the general redox reaction:

Cyanobacteria, prochlorophytes, eukaryotic algae, and higher plants use light energy to oxidize water to molecular oxygen, hydrogen ions, and electrons. The light reaction occurs in photosystem II located in the thylakoid membranes. Mitochondrial (“dark”) respiration occurs both in the light as well as in darkness although at different rates, during which ATP and reductants are formed. Respiration associated with cell synthesis increases with temperature (Q10 ca. 1.7–2.0). Photorespiration, a light-dependent oxidation of ribulose bispho-sphate produces glycolate that is excreted, oxidized, or used to synthesize amino acids, is an energy dissipating process that reduces the light-saturated rate of photosynthesis. Photo-respiration increases with higher ratios of dissolved oxygen concentration to carbon dioxide concentration.

Techniques for measuring rates of photosynthesis are based on the stoichiometry of this reaction, e.g., rates of oxygen production, rates of utilization of CO2 or water, or changes in the concentration of organic matter. The objective is to modify the natural community as little as possible during assays of in situ rates of photosynthesis. Variations in the metabolic state of the phytoplankton can be large; measurements of primary productivity may reflect the rates of certain species rather accurately, but for other species rates are estimated poorly. Nonetheless, with reasonable precautions and guarded interpretations, the methods provide useful estimates of in situ rates of phytoplanktonic photosynthesis.

Algae suspended in water are circulated within the epilimnion of stratified lakes and exposed to bright light at the surface and then moved in the circulation to low light habitats. In situ incubation is static and can suppress turbulent circulation of water containing algae for several hours during the incubation. Dynamic incubation methods were developed to move incubating samples within the mixed layer to derive an integral of primary production within the zone (e.g., Gervais et al., 1997). In general, however, for short-term incubations, agreement is relatively close between the results from static and dynamic incubations.

Although in situ incubation is most desirable, it is not always practical when studying large lakes where simultaneous measurements at distant stations are necessary. Therefore, samples of natural phytoplankton can be incubated under controlled light and temperature conditions in laboratory incubators that simulate underwater conditions. From the intensity and spectral distribution of light, temperature, and phytoplankton in relation to depth, the relationship between light and photosynthesis can be used to estimate primary production in the natural environment (cf., Strickland, 1960; Saunders et al., 1962; Fee, 1969, 1971, 1973; Parsons et al., 1984; Walsby, 1997a).

Details of the integration of phytoplankton photosynthesis through time and depth in a water column can be calculated by numerical analysis based on the photosynthesis irradiance curve of the phytoplankton, the vertical dis-

tribution of the community, and details of the underwater light field (Walsby, 1997b). Variations in the light field are calculated from continuous recordings of surface irradiance and measurements of vertical light attenuation, with corrections for losses by reflection at the water surface that depend on the sun's elevation and wave action. Effects of changes in phytoplankton distribution, light attenuation, photoinhibition, and water temperatures can be modeled for reasonable estimates of primary productivity within the euphotic depth integrated over 24 hours.

Alternatively, measurements of in situ photosynthesis can be estimated indirectly in the natural environment from changes in environmental parameters affected by photosynthesis, such as changes in CO2 and oxygen concentrations, pH, or specific conductance. The resultant evaluation is a measure of community metabolism, and a number of critical assumptions must be made when assessing which components of the overall biological communities are causing the observed changes in environmental parameters over short periods of time. This approach will be undertaken in Exercise 24.

Finally, autotrophic productivity of lake ecosystems that are sufficiently large to stratify thermally can be estimated indirectly by measuring long-term changes in biomass, reductions in certain nutrients, or hypolimnetic oxygen deficits or accumulations of CO2. This systems approach will be treated separately in Exercise 29.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Fee, E.J. 1969. A numerical model for the estimation of photosynthetic production, integrated over time and depth, in natural waters. Limnol. Oceanogr. 14:906–911.

    Article  Google Scholar 

  • Fee, E.J. 1971. Digital computer programs for estimating primary production, integrated over depth and time, in water bodies, Spec. Rept. 14, Center Great Lakes Studies, Univ. Wisc. 42 pp.

    Google Scholar 

  • Fee, E.J. 1973. A numerical model for determining integral primary production and its application to Lake Michigan. J. Fish. Res. Bd. Canada 30:1447–1468.

    Article  Google Scholar 

  • Findenegg, I. 1966. Die Bedeutung kurzwelliger Strahlung für die planktische Primärproduktion in den Seen. Verh. Int. Ver. Limnol. 16:314–320.

    Google Scholar 

  • Gervais, F., D. Opitz, and H. Behrendt. 1997. Influence of small scale turbulence and large scale mixing on phytoplankton primary production. Hydrobiologia 342/343:95–105.

    Article  Google Scholar 

  • Hough, R.A. and G.J. Filbin. 1978. Factors affecting the removal of 14C from water. Verh. Int. Ver. Limnol. 20:49–53.

    Google Scholar 

  • Larson, D.W. 1978. Possible misestimates of lake primary productivity due to vertical migrations by dinoflagellates. Arch. Hydrobiol. 81:296–303.

    Google Scholar 

  • McKinley, K.R. and R.G. Wetzel. 1977. Tritium oxide uptake by algae: An independent measure of phytoplankton photosynthesis. Limnol. Oceanogr. 22:377–380.

    Article  CAS  Google Scholar 

  • McKinley, K.R., A.K. Ward, and R.G. Wetzel. 1977. A method for obtaining more precise measures of excreted organic carbon. Limnol. Oceanogr. 22:570–573.

    Article  CAS  Google Scholar 

  • Parsons, T.R., Y. Maita, and C.M. Lalli. 1984. A Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon, Elmsford, NY. 173 pp.

    Google Scholar 

  • Peterson, B.J. 1978. Radiocarbon uptake: Its relation to net particulate carbon production. Limnol. Oceanogr. 23:179–184.

    Article  CAS  Google Scholar 

  • Saunders, G.W., F.B. Trama, and R.W. Bachmann. 1962. Evaluation of a modified 14C technique for shipboard estimation of photosynthesis in large lakes. Publ. Great Lakes Res. Div., Univ. Mich. 8. 61 pp.

    Google Scholar 

  • Schindler, D.W. 1966. A liquid scintillation method for measuring carbon-14 uptake in photosynthesis. Nature 211:844–845.

    Article  PubMed  CAS  Google Scholar 

  • Schindler, D.W. and S.K. Holmgren. 1971. Primary productivity and phytoplankton in the Experimental Lakes Area, northwestern Ontario and other low carbonate waters, and a liquid scintillation method for determining 14C activity in photosynthesis. J. Fish. Res. Bd. Canada 28:189–201.

    Article  Google Scholar 

  • Schindler, D.W., J. Moore, and R.A. Vollenweider. 1974. Liquid scintillation techniques, pp. 76–80. In: R.A. Vollenweider, Editor. A Manual on Methods for Measuring Primary Production in Aquatic Environments. IBP Handbook No. 12. 2nd Edition. Blackwell, Sci. Publish. Oxford.

    Google Scholar 

  • Sorokin, Yu.I. 1959. Opredeleniye velichin izotopicheskogo effekta pri fotosinteze v kultur-akh Scenedesmus quadricauda. (Determination of the isotopic discrimination by photosynthesis in cultures of Scenedesmus quadricauda.) Bull. Inst. Biol. Vodokhranilisch 4:7–9.

    Google Scholar 

  • Steemann Nielsen, E. 1951. Measurement of the production of organic matter in the sea by means of carbon-14. Nature 167:846–685.

    Google Scholar 

  • Steemann Nielsen, E. 1952. The use of radioactive carbon (14C) for measuring organic production in the sea. J. Cons. Int. Expl. Mer 18:117–140.

    Google Scholar 

  • Steemann Nielsen, E. 1955. The interaction of photosynthesis and respiration and its importance for the determination of 14C-discrimination in photosynthesis. Physiol. Plant. 8:945–953.

    Article  Google Scholar 

  • Strickland, J.D.H. 1960. Measuring the production of marine phytoplankton. Bull. Fish. Res. Bd. Canada 122. 172 pp.

    Google Scholar 

  • Strickland, J.D.H. and T.R. Parsons. 1972. A Practical Handbook of Seawater Analysis. 2nd Ed. Bull. Fish. Res. Bd. Canada 167. 311 pp.

    Google Scholar 

  • Taylor, W.D., J.W. Barko, and W.F. James. 1988. Contrasting dual patterns of vertical migration in the dinoflagellate Ceratium hirundinella in relation to phosphorus supply in a north temperature reservoir. Can. J. Fish. Aquat. Sci. 45:1093–1098.

    Article  Google Scholar 

  • Vollenweider, R.A. 1965. Calculation models of photosynthesis-depth curves and some implications regarding day rate estimates in primary production measurements. Mem. Ist. Ital. Idrobiol. 18 Suppl.:425–457.

    Google Scholar 

  • Vollenweider, R.A. and A. Nauwerck. 1961. Some observations on the 14C method for measuring primary production. Verh. Int. Ver. Limnol. 14:134–139.

    Google Scholar 

  • Walsby, A.E. 1997a. Modelling the daily integral of photosynthesis by phytoplankton: Its dependence on the mean depth of the population. Hydrobiologia 349:65–14.

    Article  CAS  Google Scholar 

  • Walsby, A.E. 1997b. Numerical integration of phytoplankton photosynthesis through time and depth in a water column. New Phytol. 136:189–209.

    Article  CAS  Google Scholar 

  • Wetzel, R.G. 1964. A comparative study of the primary productivity of higher aquatic plants, periphyton, and phytoplankton in a large, shallow lake. Int. Rev. ges. Hydrobiol. 49:1–61.

    Article  Google Scholar 

  • Wetzel, R.G. 1965. Necessity for decontamination of filters in 14C measured rates of photosynthesis in fresh waters. Ecology 46:540–542.

    Article  Google Scholar 

  • Wetzel, R.G. 1983. Limnology. 2nd Ed. Saunders Coll., Philadelphia. 860 pp.

    Google Scholar 

  • Wetzel, R.G. 1990. Land-water interfaces: Metabolic and limnological regulators. Verhand. Internat. Verein. Limnol. 24:6–24.

    Google Scholar 

  • Wetzel, R.G. 1999. Limnology: Lake and River Ecosystems. 3rd Ed. Academic Press, San Diego (in press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wetzel, R.G., Likens, G.E. (2000). Primary Productivity of Phytoplankton. In: Limnological Analyses. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-3250-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3250-4_14

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-3186-3

  • Online ISBN: 978-1-4757-3250-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics