Composition and Biomass of Phytoplankton

  • Robert G. Wetzel
  • Gene E. Likens
Chapter

Abstract

The structure of photosynthetic populations in aquatic ecosystems is dynamic and constantly changing in species composition and biomass distribution. An understanding of community structure is dependent on an ability to differentiate between true population changes and variations in spatial and temporal distribution. Changes in species composition and biomass may affect photosynthetic rates, assimilation efficiencies, rates of nutrient utilization, grazing rates, and so on.

Keywords

Particulate Organic Carbon Algal Species Glass Fiber Filter Sedimentation Chamber Algal Pigment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahlgren, G. 1983. Comparison of methods for estimation of phytoplankton carbon. Arch. Hydrobiol. 98:489–508.Google Scholar
  2. American Public Health Association. 1998. Standard Methods for the Examination of Water and Wastewater. 20th Ed. Water Environment Federation, Arlington, VA. 1183 pp.Google Scholar
  3. Bellinger, E.G. 1974. A note on the use of algal sizes in estimates of population standing crops. Brit. Phycol. J. 9:157–161.CrossRefGoogle Scholar
  4. Beutler, M., K.H. Wiltshire, B. Meyer, and C. Moldaenke. 1998. Differenzierung spektraler Algengruppen durch computer-gestützte Analyse von Fluoreszenzanregungsspektren. Vom Wasser 91:1–14.Google Scholar
  5. Blomqvist, P. and E. Herlitz. 1998. Methods for quantitative assessment of phytoplankton in fresh waters. Part 2. Rapport 4861, Naturvârdsverket Förlag, Uppsala, Sweden. 68 pp.Google Scholar
  6. Borsheim, K.Y. and G. Bratbak. 1987. Cell volume to cell carbon conversion factors for a bac-terivorous Monas sp. enriched from seawater. Mar. Ecol. Progr. Ser. 36:171–176.CrossRefGoogle Scholar
  7. Brock, T.D. 1983. Membrane Filtration: A User’s Guide and Reference Manual. Science Tech. Inc. Madison. 381 pp.Google Scholar
  8. Clark, W.J. and WF. Sigler. 1963. Method of concentrating phytoplankton samples using membrane filters. Limnol. Oceanogr. 8:127–129.CrossRefGoogle Scholar
  9. Coulon, C. and V Alexander. 1972. A sliding-chamber phytoplankton settling technique for making permanent quantitative slides with applications in fluorescent microscopy and autoradiography. Limnol. Oceanogr. 17:149–152.CrossRefGoogle Scholar
  10. Crumpton, WG. and R.G. Wetzel. 1981. A method for preparing permanent mounts of phytoplankton for critical microscopy and cell counting. Limnol. Oceanogr. 26:976–980.CrossRefGoogle Scholar
  11. deNoyelles, F, Jr. 1968. A stained-organism filter technique for concentrating phytoplankton. Limnol. Oceanogr. 13:562–565.CrossRefGoogle Scholar
  12. Dodson, A.N. and W.H.Thomas. 1964. Concentration of plankton in a gentle fashion. Limnol. Oceanogr. 9:455–456.CrossRefGoogle Scholar
  13. Friedrich, G., V. Gerhardt, U. Bodemer, and M. Pohlmann. 1998. Phytoplankton composition and chlorophyll concentration in fresh waters: Comparison of delayed fluorescence excitation spectroscopy, extractive spectrophotometric method, and Utermöhl-Method. Limno-logica 28:323–328.Google Scholar
  14. Gerhardt, V. and U Bodemer. 1998. Delayed fluorescence excitation spectroscopy: A method for automatic determination of phytoplankton composition of freshwaters and sediments (interstitial) and of algal composition of benthos. Limnologica 28:313–323.Google Scholar
  15. del Giorgio, P.A., D. Bird, Y.T. Prairie, and D. Planas. 1996. Flow cytometric determinations of bacterial abundance in lake plankton with the green nucleic acid stain SYTO 13. Limnol. Oceanogr. 41:783–789.CrossRefGoogle Scholar
  16. Golterman, H.L. and R.S. Clymo (eds). 1969. Methods for Chemical Analysis of Fresh Waters. IBP Handbook No. 8 Blackwell, Oxford. 172 pp.Google Scholar
  17. Hillebrand, H., C.-D. Dürselen, D. Kirschtel, U. Pollingher, and T. Zohary. 1999. Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 35:403–424.CrossRefGoogle Scholar
  18. Holmes, R.W 1962. The preparation of marine phytoplankton for microscopic examination and enumeration on molecular filters. U.S. Fish. Wildl. Serv., Spec. Sci. Rep. Fish. 433. 6 pp.Google Scholar
  19. Holm-Hansen, O., C.J. Lorenzen, R.W. Holmes, and J.D.H. Strickland. 1965. Fluorometric determination of chlorophyll. J. Conseil Perm. Int. Explor. Mer 30:3–15.Google Scholar
  20. Jackson, H.W and L.G. Williams. 1962. Calibration and use of certain plankton counting equipment. Trans. Amer. Microsc. Soc. 81:96–103.CrossRefGoogle Scholar
  21. Jacobsen, T.R. 1982. Comparison of chlorophyll a measurements by fluorometric, spectrophotometric and high pressure liquid chromatographic methods in aquatic environments. Arch. Hydrobiol. Beih. Ergebn. Limnol. 16:35–45.Google Scholar
  22. Javornický, P. 1958. Revise některých metod pro zjišťování kvantity fytoplanktonu. (The revision of some quantitative methods for phytoplankton research.) (In Czech, with English summary) Sci. Pap. Inst. Chem. Technol. Prague, Fac. Technol. Fuel and Water 2(Part 1):283–367.Google Scholar
  23. Jeffrey, S.W. and G.F. Humphrey. 1975. New spectrophotometric equations for determining chlorophylls a, b, c 1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanzen 167:191–194.Google Scholar
  24. Kellar, P.E., S.A. Paulson, and L.J. Paulson. 1980. Methods for biological, chemical and physical analyses in reservoirs. Tech. Rep. 5, Lake Mead Limnological Res. Center, Univ. Nevada, Las Vegas. 234 pp.Google Scholar
  25. Lium, B.W. and W.T. Shoaf. 1978. The use of magnesium carbonate in chlorophyll determinations. Wat. Resources Bull. 14:190–194.CrossRefGoogle Scholar
  26. Lorenzen, C.J. 1967. Determination of chlorophyll and pheo-pigments: Spectrophotometric equations. Limnol. Oceanogr. 12:343–346.CrossRefGoogle Scholar
  27. Lund, J.W.G. 1951. A sedimentation technique for counting algae and other organisms. Hydrobiologia 3:390–394.CrossRefGoogle Scholar
  28. Lund, J.W.G., C. Kipling, and E.D. LeCren. 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11:143–170.CrossRefGoogle Scholar
  29. Lundgren, A. 1978. Experimental lake fertilization in the Kuokkel area, northern Sweden: Changes in sestonic carbon and the role of phytoplankton. Verhand. Internat. Verein. Limnol. 20:863–868.Google Scholar
  30. MacIsaac, E.A. and J.G. Stockner. 1993. Enumeration of phototrophic picoplankton by auto-fluorescence microscopy, pp. 187–197. In: P.F. Kemp, B. Sherr, E. Sherr, and J.J. Cole, Editors. The Handbook of Methods in Aquatic Microbial Ecology. Lewis Publishers, Boca Raton.Google Scholar
  31. Marker, A.F.H., C.A. Crowther, and R.J.M. Gunn. 1980. Methanol and acetone as solvents for estimating chlorophyll a and phaeopigments by spectrophotometry. Arch. Hydrobiol. Beih. Ergebn. Limnol. 14:52–69.Google Scholar
  32. Marker, A.F.H. and S. Jinks. 1982. The spectrophotometric analysis of chlorophyll a and phaeopigments in acetone, ethanol and methanol. Arch. Hydrobiol. Beih. Ergebn. Limnol. 16:3–17.Google Scholar
  33. McNabb, C.D. 1960. Enumeration of freshwater phytoplankton concentrated on the membrane filter. Limnol. Oceanogr. 5:57–61.CrossRefGoogle Scholar
  34. Moore, J.K. 1963. Refinement of a method for filtering and preserving marine phytoplankton on a membrane filter. Limnol. Oceanogr. 5:304–305.CrossRefGoogle Scholar
  35. Mullin, M.M., PR. Sloan, and R.W Eppley. 1966. Relationship between carbon content, cell volume, and area in phytoplankton. Limnol. Oceanogr. 11:307–311.CrossRefGoogle Scholar
  36. Nusch, E.A. 1980. Comparison of different methods for chlorophyll and phaeopigment determination. Arch. Hydrobiol. Beih. Ergebn. Limnol. 14:14–36.Google Scholar
  37. Oliver, R., G. Ganf, S. Geary, J. Brookes, M. Fink, and M. Burch. 1996. Rapid measurement of algal biomass, species composition and physiological condition. In: R.J. Banens and R. Lehane, Editors. Riverine Environment Research Forum. Attwood Victoria Publ., Murray-Darling Basin Commission, Australia.Google Scholar
  38. Oliver, R.L. and J. Whittington. 1997. Using measurements of variable chlorophyll-a fluorescence to investigate the influence of water movement on the photochemistry of phytoplankton. Physical Limnology, Coastal and Estuarine Studies, American Geophysical Union.Google Scholar
  39. Olrik, K., P. Blomqvist, P. Brettum, G Cronberg, and P. Eloranta. 1998. Methods for the quantitative assessment of phytoplankton in fresh waters. Part I. Rapport 4860, Naturvårdsverket Förlag, Uppsala, Sweden, 86 pp.Google Scholar
  40. Olson, R.J., E.R. Zettler, and M.D. DuRand. 1993. Phytoplankton analyses using flow cytometry, pp. 175–186. In: P.F. Kemp, B.F. Sherr, E.B. Sherr, and J.J. Cole, Editors. Handbook of Methods in Aquatic Microbial Ecology. Lewis Publishers, Boca Raton.Google Scholar
  41. Palmer, C.M. and T.E. Maloney. 1954. A new counting slide for nannoplankton. Spec. Publ. Amer. Soc. Limnol. Oceanogr. 21. 6 pp.Google Scholar
  42. Redalje, D.G. and E.A. Laws. 1981. A new method for estimating phytoplankton growth rates and carbon biomass. Mar. Biol. 62:73–79.CrossRefGoogle Scholar
  43. Riaux-Gobin, C. and B. Klein. 1993. Microphytobenthic biomass measurement using HPLC and conventional pigment analysis, pp. 369–376. In: RF. Kemp, B. Sherr, E. Sherr, and J.J. Cole, Editors. The Handbook of Methods in Aquatic Microbial Ecology. Lewis Publishers, Boca Raton.Google Scholar
  44. Riemann, B. 1980. A note on the use of methanol as an extraction solvent for chlorophyll a determination. Arch. Hydrobiol. Beih. Ergebn. Limnol. 14:70–78.Google Scholar
  45. Reimann, B. 1982. Measurement of chlorophyll a and its degradation products: A comparison of methods. Arch. Hydrobiol. Beih. Ergebn. Limnol. 16:19–24.Google Scholar
  46. Rott, E. 1980. Spectrophotometric and chromatographic chlorophyll analysis: Comparison of results and discussion of the trichrometric method. Arch. Hydrobiol. Beih. Ergebn. Limnol. 14:37–45.Google Scholar
  47. Schanz, F. and H. Rai. 1988. Extract preparation and comparison of fluorometric, chromatographic (HPLC) and spectrophotometric determinations of chlorophyll-a. Arch. Hydrobiol. 112:533–539.Google Scholar
  48. Schmid, H., F Bauer, and H.B. Stich. 1998. Determination of algal biomass with HPLC pigment analysis from lakes of different trophic state in comparison to microscopically measured biomass. J. Plankton Res. 20:1651–1661.CrossRefGoogle Scholar
  49. Schröder, R. 1969. Ein summierender Wasserschöpfer. Arch. Hydrobiol. 66:241–243.Google Scholar
  50. Sicko-Goad, L., E.F. Stoermer, and B.G. Ladewski. 1977. A morphometric method for correcting phytoplankton cell volume estimates. Protoplasma 93:147–163.CrossRefGoogle Scholar
  51. Stainton, M.P, M.J. Capel, and F.A.J. Armstrong. 1977. The Chemical Analysis of Fresh Water. 2nd Ed. Misc. Spec. Publ. Fish Environ. Canada 25. 180 pp.Google Scholar
  52. Sterman, N.T. 1988. Spectrophotometric and fluorometric chlorophyll analysis, pp. 35–45. In: C.S. Lobban, D.J. Chapman, and B.P Kremer, Editors. Experimental Phycology: A Laboratory Manual. Cambridge Univ. Press, Cambridge.Google Scholar
  53. Straskraba, M. and P. Javornicky. 1973. Limnology of two re-regulation reservoirs in Czechoslovakia. Hydrobiol. Studies 2:249–316.Google Scholar
  54. Strathmann, R.R. 1967. Estimating the organic carbon content of phytoplankton from cell volume or plasma volume. Limnol. Oceanogr. 12:411–418.CrossRefGoogle Scholar
  55. Strickland, J.D.H. and T.R. Parsons. 1972. A Practical Handbook of Seawater Analysis. 2nd Ed. Fisheries Research Board of Canada, Ottawa. 310 pp.Google Scholar
  56. Turner, G.K. 1985. Measurement of light from chemical or biochemical reactions, pp. 43–78. In: K. Van Dyke, Editor. Bioluminescence and Chemiluminescence: Instruments and Applications.Google Scholar
  57. Tyler, P.A. 1971. A simple and rapid technique for surveying size and shape variation in desmids and diatoms. Brit. Phycol. J. 6:231–233.CrossRefGoogle Scholar
  58. Utermöhl, H. 1931. Neue Wege in der quantitativen Erfassung des Planktons. Verh. Int. Ver. Limnol. 5:567–595.Google Scholar
  59. Utermöhl, H. 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitt. Int. Ver. Limnol. 9. 38 pp.Google Scholar
  60. Wetzel, R.G. 1983. Limnology, 2nd Ed. Saunders Coll., Philadelphia. 860 pp.Google Scholar
  61. Wiltshire, K.H, S. Harsdorf, B. Smidt, G Blöcker, R. Reuter, and F. Schroeder. 1998. The determination of algal biomass (as chlorophyll) in suspended matter from the Elbe estuary and the German Bight: A comparison of high-performance liquid chromatography, delayed fluorescence and prompt fluorescence methods. J. Exp. Mar. Biol. Ecol. 222:113–131.CrossRefGoogle Scholar
  62. Yentsch, C.S. and D.W. Menzel. 1963. A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence. Deep-Sea Res. 10:221–231.Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Robert G. Wetzel
    • 1
  • Gene E. Likens
    • 2
  1. 1.Department of Biology, College of Arts and SciencesUniversity of AlabamaTuscaloosaUSA
  2. 2.Institute of Ecosystem Studies, Cary ArboretumThe New York Botanical GardenMillbrookUSA

Personalised recommendations