Skip to main content

Composition and Biomass of Phytoplankton

  • Chapter
Limnological Analyses

Abstract

The structure of photosynthetic populations in aquatic ecosystems is dynamic and constantly changing in species composition and biomass distribution. An understanding of community structure is dependent on an ability to differentiate between true population changes and variations in spatial and temporal distribution. Changes in species composition and biomass may affect photosynthetic rates, assimilation efficiencies, rates of nutrient utilization, grazing rates, and so on.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahlgren, G. 1983. Comparison of methods for estimation of phytoplankton carbon. Arch. Hydrobiol. 98:489–508.

    CAS  Google Scholar 

  • American Public Health Association. 1998. Standard Methods for the Examination of Water and Wastewater. 20th Ed. Water Environment Federation, Arlington, VA. 1183 pp.

    Google Scholar 

  • Bellinger, E.G. 1974. A note on the use of algal sizes in estimates of population standing crops. Brit. Phycol. J. 9:157–161.

    Article  Google Scholar 

  • Beutler, M., K.H. Wiltshire, B. Meyer, and C. Moldaenke. 1998. Differenzierung spektraler Algengruppen durch computer-gestützte Analyse von Fluoreszenzanregungsspektren. Vom Wasser 91:1–14.

    Google Scholar 

  • Blomqvist, P. and E. Herlitz. 1998. Methods for quantitative assessment of phytoplankton in fresh waters. Part 2. Rapport 4861, Naturvârdsverket Förlag, Uppsala, Sweden. 68 pp.

    Google Scholar 

  • Borsheim, K.Y. and G. Bratbak. 1987. Cell volume to cell carbon conversion factors for a bac-terivorous Monas sp. enriched from seawater. Mar. Ecol. Progr. Ser. 36:171–176.

    Article  Google Scholar 

  • Brock, T.D. 1983. Membrane Filtration: A User’s Guide and Reference Manual. Science Tech. Inc. Madison. 381 pp.

    Google Scholar 

  • Clark, W.J. and WF. Sigler. 1963. Method of concentrating phytoplankton samples using membrane filters. Limnol. Oceanogr. 8:127–129.

    Article  Google Scholar 

  • Coulon, C. and V Alexander. 1972. A sliding-chamber phytoplankton settling technique for making permanent quantitative slides with applications in fluorescent microscopy and autoradiography. Limnol. Oceanogr. 17:149–152.

    Article  Google Scholar 

  • Crumpton, WG. and R.G. Wetzel. 1981. A method for preparing permanent mounts of phytoplankton for critical microscopy and cell counting. Limnol. Oceanogr. 26:976–980.

    Article  Google Scholar 

  • deNoyelles, F, Jr. 1968. A stained-organism filter technique for concentrating phytoplankton. Limnol. Oceanogr. 13:562–565.

    Article  Google Scholar 

  • Dodson, A.N. and W.H.Thomas. 1964. Concentration of plankton in a gentle fashion. Limnol. Oceanogr. 9:455–456.

    Article  Google Scholar 

  • Friedrich, G., V. Gerhardt, U. Bodemer, and M. Pohlmann. 1998. Phytoplankton composition and chlorophyll concentration in fresh waters: Comparison of delayed fluorescence excitation spectroscopy, extractive spectrophotometric method, and Utermöhl-Method. Limno-logica 28:323–328.

    CAS  Google Scholar 

  • Gerhardt, V. and U Bodemer. 1998. Delayed fluorescence excitation spectroscopy: A method for automatic determination of phytoplankton composition of freshwaters and sediments (interstitial) and of algal composition of benthos. Limnologica 28:313–323.

    CAS  Google Scholar 

  • del Giorgio, P.A., D. Bird, Y.T. Prairie, and D. Planas. 1996. Flow cytometric determinations of bacterial abundance in lake plankton with the green nucleic acid stain SYTO 13. Limnol. Oceanogr. 41:783–789.

    Article  Google Scholar 

  • Golterman, H.L. and R.S. Clymo (eds). 1969. Methods for Chemical Analysis of Fresh Waters. IBP Handbook No. 8 Blackwell, Oxford. 172 pp.

    Google Scholar 

  • Hillebrand, H., C.-D. Dürselen, D. Kirschtel, U. Pollingher, and T. Zohary. 1999. Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 35:403–424.

    Article  Google Scholar 

  • Holmes, R.W 1962. The preparation of marine phytoplankton for microscopic examination and enumeration on molecular filters. U.S. Fish. Wildl. Serv., Spec. Sci. Rep. Fish. 433. 6 pp.

    Google Scholar 

  • Holm-Hansen, O., C.J. Lorenzen, R.W. Holmes, and J.D.H. Strickland. 1965. Fluorometric determination of chlorophyll. J. Conseil Perm. Int. Explor. Mer 30:3–15.

    CAS  Google Scholar 

  • Jackson, H.W and L.G. Williams. 1962. Calibration and use of certain plankton counting equipment. Trans. Amer. Microsc. Soc. 81:96–103.

    Article  Google Scholar 

  • Jacobsen, T.R. 1982. Comparison of chlorophyll a measurements by fluorometric, spectrophotometric and high pressure liquid chromatographic methods in aquatic environments. Arch. Hydrobiol. Beih. Ergebn. Limnol. 16:35–45.

    CAS  Google Scholar 

  • Javornický, P. 1958. Revise nÄ›kterých metod pro zjiÅ¡Å¥ování kvantity fytoplanktonu. (The revision of some quantitative methods for phytoplankton research.) (In Czech, with English summary) Sci. Pap. Inst. Chem. Technol. Prague, Fac. Technol. Fuel and Water 2(Part 1):283–367.

    Google Scholar 

  • Jeffrey, S.W. and G.F. Humphrey. 1975. New spectrophotometric equations for determining chlorophylls a, b, c 1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanzen 167:191–194.

    CAS  Google Scholar 

  • Kellar, P.E., S.A. Paulson, and L.J. Paulson. 1980. Methods for biological, chemical and physical analyses in reservoirs. Tech. Rep. 5, Lake Mead Limnological Res. Center, Univ. Nevada, Las Vegas. 234 pp.

    Google Scholar 

  • Lium, B.W. and W.T. Shoaf. 1978. The use of magnesium carbonate in chlorophyll determinations. Wat. Resources Bull. 14:190–194.

    Article  CAS  Google Scholar 

  • Lorenzen, C.J. 1967. Determination of chlorophyll and pheo-pigments: Spectrophotometric equations. Limnol. Oceanogr. 12:343–346.

    Article  CAS  Google Scholar 

  • Lund, J.W.G. 1951. A sedimentation technique for counting algae and other organisms. Hydrobiologia 3:390–394.

    Article  Google Scholar 

  • Lund, J.W.G., C. Kipling, and E.D. LeCren. 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11:143–170.

    Article  Google Scholar 

  • Lundgren, A. 1978. Experimental lake fertilization in the Kuokkel area, northern Sweden: Changes in sestonic carbon and the role of phytoplankton. Verhand. Internat. Verein. Limnol. 20:863–868.

    Google Scholar 

  • MacIsaac, E.A. and J.G. Stockner. 1993. Enumeration of phototrophic picoplankton by auto-fluorescence microscopy, pp. 187–197. In: P.F. Kemp, B. Sherr, E. Sherr, and J.J. Cole, Editors. The Handbook of Methods in Aquatic Microbial Ecology. Lewis Publishers, Boca Raton.

    Google Scholar 

  • Marker, A.F.H., C.A. Crowther, and R.J.M. Gunn. 1980. Methanol and acetone as solvents for estimating chlorophyll a and phaeopigments by spectrophotometry. Arch. Hydrobiol. Beih. Ergebn. Limnol. 14:52–69.

    CAS  Google Scholar 

  • Marker, A.F.H. and S. Jinks. 1982. The spectrophotometric analysis of chlorophyll a and phaeopigments in acetone, ethanol and methanol. Arch. Hydrobiol. Beih. Ergebn. Limnol. 16:3–17.

    CAS  Google Scholar 

  • McNabb, C.D. 1960. Enumeration of freshwater phytoplankton concentrated on the membrane filter. Limnol. Oceanogr. 5:57–61.

    Article  Google Scholar 

  • Moore, J.K. 1963. Refinement of a method for filtering and preserving marine phytoplankton on a membrane filter. Limnol. Oceanogr. 5:304–305.

    Article  Google Scholar 

  • Mullin, M.M., PR. Sloan, and R.W Eppley. 1966. Relationship between carbon content, cell volume, and area in phytoplankton. Limnol. Oceanogr. 11:307–311.

    Article  Google Scholar 

  • Nusch, E.A. 1980. Comparison of different methods for chlorophyll and phaeopigment determination. Arch. Hydrobiol. Beih. Ergebn. Limnol. 14:14–36.

    CAS  Google Scholar 

  • Oliver, R., G. Ganf, S. Geary, J. Brookes, M. Fink, and M. Burch. 1996. Rapid measurement of algal biomass, species composition and physiological condition. In: R.J. Banens and R. Lehane, Editors. Riverine Environment Research Forum. Attwood Victoria Publ., Murray-Darling Basin Commission, Australia.

    Google Scholar 

  • Oliver, R.L. and J. Whittington. 1997. Using measurements of variable chlorophyll-a fluorescence to investigate the influence of water movement on the photochemistry of phytoplankton. Physical Limnology, Coastal and Estuarine Studies, American Geophysical Union.

    Google Scholar 

  • Olrik, K., P. Blomqvist, P. Brettum, G Cronberg, and P. Eloranta. 1998. Methods for the quantitative assessment of phytoplankton in fresh waters. Part I. Rapport 4860, NaturvÃ¥rdsverket Förlag, Uppsala, Sweden, 86 pp.

    Google Scholar 

  • Olson, R.J., E.R. Zettler, and M.D. DuRand. 1993. Phytoplankton analyses using flow cytometry, pp. 175–186. In: P.F. Kemp, B.F. Sherr, E.B. Sherr, and J.J. Cole, Editors. Handbook of Methods in Aquatic Microbial Ecology. Lewis Publishers, Boca Raton.

    Google Scholar 

  • Palmer, C.M. and T.E. Maloney. 1954. A new counting slide for nannoplankton. Spec. Publ. Amer. Soc. Limnol. Oceanogr. 21. 6 pp.

    Google Scholar 

  • Redalje, D.G. and E.A. Laws. 1981. A new method for estimating phytoplankton growth rates and carbon biomass. Mar. Biol. 62:73–79.

    Article  CAS  Google Scholar 

  • Riaux-Gobin, C. and B. Klein. 1993. Microphytobenthic biomass measurement using HPLC and conventional pigment analysis, pp. 369–376. In: RF. Kemp, B. Sherr, E. Sherr, and J.J. Cole, Editors. The Handbook of Methods in Aquatic Microbial Ecology. Lewis Publishers, Boca Raton.

    Google Scholar 

  • Riemann, B. 1980. A note on the use of methanol as an extraction solvent for chlorophyll a determination. Arch. Hydrobiol. Beih. Ergebn. Limnol. 14:70–78.

    CAS  Google Scholar 

  • Reimann, B. 1982. Measurement of chlorophyll a and its degradation products: A comparison of methods. Arch. Hydrobiol. Beih. Ergebn. Limnol. 16:19–24.

    Google Scholar 

  • Rott, E. 1980. Spectrophotometric and chromatographic chlorophyll analysis: Comparison of results and discussion of the trichrometric method. Arch. Hydrobiol. Beih. Ergebn. Limnol. 14:37–45.

    CAS  Google Scholar 

  • Schanz, F. and H. Rai. 1988. Extract preparation and comparison of fluorometric, chromatographic (HPLC) and spectrophotometric determinations of chlorophyll-a. Arch. Hydrobiol. 112:533–539.

    CAS  Google Scholar 

  • Schmid, H., F Bauer, and H.B. Stich. 1998. Determination of algal biomass with HPLC pigment analysis from lakes of different trophic state in comparison to microscopically measured biomass. J. Plankton Res. 20:1651–1661.

    Article  CAS  Google Scholar 

  • Schröder, R. 1969. Ein summierender Wasserschöpfer. Arch. Hydrobiol. 66:241–243.

    Google Scholar 

  • Sicko-Goad, L., E.F. Stoermer, and B.G. Ladewski. 1977. A morphometric method for correcting phytoplankton cell volume estimates. Protoplasma 93:147–163.

    Article  Google Scholar 

  • Stainton, M.P, M.J. Capel, and F.A.J. Armstrong. 1977. The Chemical Analysis of Fresh Water. 2nd Ed. Misc. Spec. Publ. Fish Environ. Canada 25. 180 pp.

    Google Scholar 

  • Sterman, N.T. 1988. Spectrophotometric and fluorometric chlorophyll analysis, pp. 35–45. In: C.S. Lobban, D.J. Chapman, and B.P Kremer, Editors. Experimental Phycology: A Laboratory Manual. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Straskraba, M. and P. Javornicky. 1973. Limnology of two re-regulation reservoirs in Czechoslovakia. Hydrobiol. Studies 2:249–316.

    Google Scholar 

  • Strathmann, R.R. 1967. Estimating the organic carbon content of phytoplankton from cell volume or plasma volume. Limnol. Oceanogr. 12:411–418.

    Article  CAS  Google Scholar 

  • Strickland, J.D.H. and T.R. Parsons. 1972. A Practical Handbook of Seawater Analysis. 2nd Ed. Fisheries Research Board of Canada, Ottawa. 310 pp.

    Google Scholar 

  • Turner, G.K. 1985. Measurement of light from chemical or biochemical reactions, pp. 43–78. In: K. Van Dyke, Editor. Bioluminescence and Chemiluminescence: Instruments and Applications.

    Google Scholar 

  • Tyler, P.A. 1971. A simple and rapid technique for surveying size and shape variation in desmids and diatoms. Brit. Phycol. J. 6:231–233.

    Article  Google Scholar 

  • Utermöhl, H. 1931. Neue Wege in der quantitativen Erfassung des Planktons. Verh. Int. Ver. Limnol. 5:567–595.

    Google Scholar 

  • Utermöhl, H. 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitt. Int. Ver. Limnol. 9. 38 pp.

    Google Scholar 

  • Wetzel, R.G. 1983. Limnology, 2nd Ed. Saunders Coll., Philadelphia. 860 pp.

    Google Scholar 

  • Wiltshire, K.H, S. Harsdorf, B. Smidt, G Blöcker, R. Reuter, and F. Schroeder. 1998. The determination of algal biomass (as chlorophyll) in suspended matter from the Elbe estuary and the German Bight: A comparison of high-performance liquid chromatography, delayed fluorescence and prompt fluorescence methods. J. Exp. Mar. Biol. Ecol. 222:113–131.

    Article  Google Scholar 

  • Yentsch, C.S. and D.W. Menzel. 1963. A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence. Deep-Sea Res. 10:221–231.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wetzel, R.G., Likens, G.E. (2000). Composition and Biomass of Phytoplankton. In: Limnological Analyses. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-3250-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3250-4_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-3186-3

  • Online ISBN: 978-1-4757-3250-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics