Introduction to Block Integer Programming

  • Vladimir Tsurkov
Part of the Applied Optimization book series (APOP, volume 51)


A number of models of complex economical and engineering systems are formulated as optimization problems of large dimension in which certain variables are discrete (integer). In view of the hierarchical structure of constraints, one can distinguish in the set of variables the subsets (subsystems) associated with the presence of a small number of common variables and constraints. Such are many problems of branch planning, design of data processing systems, planning of manufacturing corporations, and resource allocation in manufacturing and engineering systems (see the survey [2]).


Lagrange Multiplier Master Problem Auxiliary Problem Search Volume Coupling Variable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References to Chapter 3

  1. [1]
    Arkhipova T.T. and Sergienko I.V., O formalizatsii i reshenii nekotorykh zadach organizatsii vychislitel’nogo protsessa v sistemakh obrabotki dannykh (On the Formalization and Solution of Certain Organization Problems for a Computational Process in Data-Processing Systems), Kibernetika, 1973, no. 5, pp. 11–18.Google Scholar
  2. [2]
    Averbakh I.L. and Tsurkov V.I., Chelochislennye optimizatsionnye modeli blochnogo tipa (Block Integer Optimization Models), Mat. Model., 1990, vol. 2, no. 2, pp. 39–57.MathSciNetzbMATHGoogle Scholar
  3. [3]
    Averbakh I.L. and Tsurkov V.I., Blochnye zadachi chastichno-tselochislennogo programmirovaniya so svyazyvayushchimi peremennymi (Block Mixed-Integer Programming Problems with Coupling Variables), Kibern, Vychisl. Tekh., 1991, no. 89, pp. 62–67.MathSciNetzbMATHGoogle Scholar
  4. [4]
    Averbakh I.L., Teoretiko-gruppovoi metod dekompozitsii v tselochislennorn lineinom programmirovanii (A Group-Theoretical Method of Decomposition in Integer Linear Programming), Zh. Vychisl. Mat. Mat. Fiz., 1992, vol. 32, no. 8, pp. 1229–1243.MathSciNetzbMATHGoogle Scholar
  5. [5]
    Averbakh I.L., Kombinirovannaya dekompozitsiya v blochnykh zadachakh tselochislennogo lineinogo programmirovaniya (Combined Decomposition in Block Integer Linear Programming Problems), Avtom. Telemekh., 1990, no. 7, pp. 108–115.MathSciNetGoogle Scholar
  6. [6]
    Averbakh I.L., Adaptivnyi metod optimizatsii dvukhetapnykh stokhasticheskykh sistem s diskretnymi peremennymi (An Adaptive Optimization Method for Two-Stage Stochastic Systems with Discrete Variables), Izv. Akad. Nauk SSSR, Ser. Tekh. Kibern., 1990, no. 1, pp. 162–166.MathSciNetGoogle Scholar
  7. [7]
    Averbakh I.L., Iterativnyi metod resheniya diskretnykh zadach stokhasticheskogo programmirovaniya s additivno-razdelyaemymi peremennymi (An Iterative Method for Solving Discrete Stochastic Programming Problems with Additively Separable Variables), Zh. Vychisl. Mat. Mat. Fiz., 1991, vol. 31, no. 6, pp. 810–818.MathSciNetzbMATHGoogle Scholar
  8. [8]
    Averbakh I.L., Iterativnyi metod dekompozitsii v odnoetapnykh zadachakh stokhasticheskogo tselochislennogo programmirovaniya (An Iterative Method of Decomposition in Single-Stage Stochastic Integer Programming Problems), Zh. Vychisl. Mat. Mat. Fiz., 1990, vol. 30, no. 10, pp. 1467–1476.MathSciNetzbMATHGoogle Scholar
  9. [9]
    Averbakh I.L., Skhema mnogourovnevoi dekompozitsii v blochom chastichotselochislennom programmirovaniya (A Multilevel Decomposition Scheme in Block Mixed-Integer Programming), Avtorn. Telemekh., 1991, no. 11, pp. 119–126.MathSciNetGoogle Scholar
  10. [10]
    Averbakh I.L. and Tsurkov V.I., Optimizatsiya v blochnykh zadachakh s tselochislennymi peremennymi (Optimization in Block Problems with Integer Variables), Moscow: Nauka, 1995.Google Scholar
  11. [11]
    Averbakh I.L., Dvukhurovnevye sistemy lestnichoi struktury so smeshannymi peremennymi (Two-Level Systems of Ladder Structure with Mixed Variables), Izv. Akad. Nauk SSSR, Ser. Tekh. Kibern., 1992, no. 3, pp. 114–121.Google Scholar
  12. [12]
    Ayupov R.S., Kombinatorno-nepreryvnyi metod resheniya blochnykh zadach diskretnogo programmirovaniya (A Combinatorial Continuous Method for Solving Block Discrete Programming Problems), Izv. Akad. Nauk SSSR, Ser. Tekh. Kibern., 1984, no. 3, pp. 34–39.MathSciNetGoogle Scholar
  13. [13]
    Barthers J. and Henley E., Branch and Bound Method as Decomposition Tools, In Decomposition of Large-Scale Problems, Amsterdam, 1973, pp. 15–42.Google Scholar
  14. [14]
    Benders J.F., Partitioning Procedures for Solving Mixed Variable Programming Problems, Numer. Math., 1977, vol. 1, pp. 117–144.Google Scholar
  15. [15]
    Dantzig G.B. and Wolfe P., Decomposition Principle for Linear Programs, Oper. Res., 1960, vol. 8, no. 1, pp. 101–112.zbMATHCrossRefGoogle Scholar
  16. [16]
    Emelichev V.A. and Bui Kat Tyong, Dekompozitsionnyi podkhod k resheniyu kvaziblochnykh zadach diskretnoi optimizatsii na osnove metoda postroeniya posledovatel’nosti planov (A Decomposition Approach to the Solution of Quasi-Block Problems of Discrete Optimization on the Basis of the Method of Sequential Construction of Plans), Kibernetika, 1988, no. 1, pp. 116–118.Google Scholar
  17. [17]
    Ermol’ev Yu.M., Metody stokhasticheskogo programmirovaniya (Methods of Stochastic Programming), Moscow: Nauka, 1976.Google Scholar
  18. [18]
    Everett H., Generalized Lagrange Multiplier Method for Solving Problems of Optimum Allocation of Resources, Oper. Res., 1963, vol. 11, no. 3, pp. 399–417.MathSciNetzbMATHCrossRefGoogle Scholar
  19. [19]
    Finkelshtein Yu.Yu., Ob odnom klasse zadach programmirovaniya (On One Class of Programming Problems), Ekon. Mat. Metody, 1968, vol. 4, no. 4, pp. 652–655.Google Scholar
  20. [20]
    Fisher M., The Lagrangean Relaxation Method for Solving Integer Programming Problems, Manage. Sci., 1981, vol. 27, no. 1, pp. 1–18.zbMATHCrossRefGoogle Scholar
  21. [21]
    Forgo F., Dualitas es decompozicio egeszerteku programozasi feladatok eseteben, Szigma, 1976, vol. 9, no. 1–2.Google Scholar
  22. [22]
    Forgo F., Shadow Prices and Decomposition for Integer Programs, Dep. K. Marx Univ. Econ., Budapest, 1974, no. 6, pp. 1–31.MathSciNetGoogle Scholar
  23. [23]
    Garey M. and Johnson D.S., Computers and Intractability, San Francisco: Freeman, 1979.zbMATHGoogle Scholar
  24. [24]
    Gens G.V., Zadachi raspredeleniya resursov v ierarkhicheskikh sistemakh (Resource Allocation Problems in Hierarchical Systems, Tekh. Kibern., 1984, no. 1, pp. 37–44.MathSciNetGoogle Scholar
  25. [25]
    Geoffrion A.M., Lagrangean Relaxation and Its Uses in Integer Programming, Mathematical Programming Study, 1974, vol. 2, pp. 82–114.MathSciNetCrossRefGoogle Scholar
  26. [26]
    Glover F. and Klingman D., Layering Strategies for Creating Exploitable Structures in Linear and Integer Programs, Math. Programming, 1988, vol. 40, no. 2, pp. 165–181.MathSciNetzbMATHCrossRefGoogle Scholar
  27. [27]
    Glover F. and Mulvey J., Equivalence of the 0–1 Integer Programming Problem to Discrete Generalized and Pure Networks, Oper. Res., 1980, vol. 28, pp. 829–835.zbMATHCrossRefGoogle Scholar
  28. [28]
    Glover F., Glover R., and Martinson F., A Netform System for Resource Planning in the US Bureau of Land Management, J. Oper. Res. Soc., 1984, vol. 35, pp. 605–616.Google Scholar
  29. [29]
    Glover F., Hultz J., Klingman D., and Stutz J., Generalized Networks: A Fundamental Computer-Based Planning Tool, Manage. Sci., 1978, vol. 24, pp. 1209–1220.CrossRefGoogle Scholar
  30. [30]
    Golshtein E.G., Teoriya dvoistvennosti v matematicheskom programmirovanii i ee prilozheniya (Duality Theory in Mathematical Programming and Its Applications), Moscow: Nauka, 1981.Google Scholar
  31. [31]
    Gomory R.E., On the Relation between Integer and Non-Integer Solutions to Linear Programs, Proc. Nat. Acad. Sci., 1965, vol. 53, pp. 250–256.MathSciNetCrossRefGoogle Scholar
  32. [32]
    Guignard M. and Kim S., Lagrangean Decomposition: A Model Yielding Stronger Lagrangean Bounds, Math. Programming, 1987, vol. 39, no. 2, pp. 215–228.MathSciNetzbMATHCrossRefGoogle Scholar
  33. [33]
    Guilianetti S. and Lucertini M., A Decomposition Technique in Integer Linear Programming, Lect. Notes Comput. Sci., 1976, vol. 41, pp. 86–97.CrossRefGoogle Scholar
  34. [34]
    Holm S. and Tind J., A Unified Approach for Price Directive Decomposition Procedures in Integer Programming, Discrete Appl. Math., 1988, vol. 20, pp. 205–219.MathSciNetzbMATHCrossRefGoogle Scholar
  35. [35]
    Hu T.C., Integer Programming and Network Flows, Reading: Addison-Wesley, 1970.Google Scholar
  36. [36]
    Johnson E.L., On the Group Problem and a Subadditive Approach to Integer Programming, Ann. Discrete Math., 1979, no. 5, pp. 97–112.MathSciNetzbMATHCrossRefGoogle Scholar
  37. [37]
    Kaufmann A. and Henry-Labordere A., Methodes et modeles de la recherche operationelle, Paris: Dunod, 1974, vol. 3.Google Scholar
  38. [38]
    Korbut A.A. and Finkelshtein Yu.Yu., Diskretnoe programmirovanie (Discrete Programming), Moscow: Nauka, 1969.Google Scholar
  39. [39]
    Korbut A.A., Sigal I.Kh., and Finkel’shtein Yu.Yu., Gibridnye metody v diskret-noi optimizatsii. Obzor (Hybrid Methods in Discrete Optimization: A Survey), Izv. Akad. Nauk SSSR, Ser. Tekh. Kibern., 1988, no. 1, pp. 65–77.Google Scholar
  40. [40]
    Kovalev M.M., Diskretnaya optimizatsiya (Discrete Optimization), Minsk: Beloruss. State Univ., 1977.zbMATHGoogle Scholar
  41. [41]
    Lasdon L.S., Optimization Theory for Large Systems, New York: Macmillan, 1970.zbMATHGoogle Scholar
  42. [42]
    Lawler E.L., A Procedure for Computing the Best Solutions to Discrete Optimization Problems and Its Applications to the Shortest Path Problem, Manage. Sci., 1972, vol. 18, pp. 401–405.MathSciNetzbMATHCrossRefGoogle Scholar
  43. [43]
    Lebedev S.S., Tselochislennoe programmirovaniye i mnozhiteli Lagranzha (Integer Programming and Lagrange Multipliers), Ekon. Mat. Metody, 1974, vol. 10, no. 3, pp. 592–610.Google Scholar
  44. [44]
    Lyapunov A.A., O vpolne additivnykh vektor-funktsiyakh (On Completely Additive Vector Functions), Izv. Akad. Nauk SSSR, Ser. Mat., 1940, vol. 4, no. 6, pp. 465–478.Google Scholar
  45. [45]
    Manne A.S., Programming of Economic Lot Sizes, Manage. Sci., 1958, vol. 14, pp. 115–135.CrossRefGoogle Scholar
  46. [46]
    Mashchenko S.O., Dekompozitsionnyi algoritm resheniya chasticho-tselochislennykh zadach lineinogo programmirovaniya (A Decomposition Algorithm for Solving Mixed-Integer Linear Programming Problems), in Issledovanie zadach mnogokriterial’noi optimizatsii (Analysis of Multicriteria Optimization Problems), Kiev: Inst. Kibern., Akad. Nauk Ukr. 1984, pp. 49–63.Google Scholar
  47. [47]
    Mashchenko S.O., Dekompozitsionnyi algoritm resheniya chasticho-tselochislennykh zadach lineinogo programmirovaniya (A Sequential Algorithm for Solving Mixed Linear Programming Problems), in Issledovanie operatsii i ASU (Operations Research and Automatic Control Systems), Kiev: Vishcha Shkola, 1981, no. 21, pp. 33–39.Google Scholar
  48. [48]
    Mikhalevich V.S., Posledovatel’nye algoritmy optimizatsii i ikh primenenie. 1, 2 (Sequential Optimization Algorithms and Their Application. 1, 2), Kibernetika, 1965, no. 1, pp. 45–55; no. 2, pp. 85–89.Google Scholar
  49. [49]
    Mikhalevich V.S., Volkovich V.L., Voloshin A.F., and Mashchenko S.O., Posledovatel’nyi podkhod k resheniyu smeshannykh zadach lineinogo programmirovaniya (A Sequential Approach to Solving Mixed Linear Programming Problems), Kibernetika, 1983, no. 1, pp. 34–39.MathSciNetGoogle Scholar
  50. [50]
    Mikhalevich V.S., Volkovich V.L., Voloshin A.F., and Pozdnyakov Yu.M., Algoritmy posledovatel’nogo analiza i otseivaniya variantov v zadachakh diskret-noi optimizatsii (Algorithms of Sequential Analysis and Screening of Variants in Discrete Optimization Problems), Kibernetika, 1980, no. 3, pp. 76–85.MathSciNetGoogle Scholar
  51. [51]
    Pospelov G.S., Ven V.L., Solodov V.M., Shafranskii V.V., and Erlikh A.I., Problemy programmno-tselevogo planirovaniya i upravleniya (Problems of Program and Goal-Oriented Planning and Management), Moscow: Nauka, 1981.Google Scholar
  52. [52]
    Pozdnyakov Yu.M., Dekompozitsionnaya skhema resheniya zadach tselochislennogo programmirovaniya (A Decomposition Scheme for Solving Integer Programming Problems), Zh. Vychisl. Mat. Mat. Fiz., 1982, vol. 22, no. 1, pp. 57–67.MathSciNetzbMATHGoogle Scholar
  53. [53]
    Pozdnyakov Yu.M. and Mashchenko S.O., Ob optimizatsii dekompozitsii (Optimization of Decomposition), in Issledovanie operatsii i ASU (Operations Research and Automatic Control Systems), Kiev: Vishcha Shkola, 1981, no. 18, pp. 27–35.Google Scholar
  54. [54]
    Sannomiya N. and Tsukabe M., A Method for Decomposing Mixed-Integer Linear Programming Problems with Angular Structure, Int. J. Syst. Sci., 1981, vol. 12, no. 9, pp. 1031–1043.MathSciNetzbMATHCrossRefGoogle Scholar
  55. [55]
    Sergienko I.V. and Golodnikov A.N., 0 primenenii metoda vektora spada v dekompozichionnykh skhemakh resheniya zadach tselochislennogo lineinogo programmirovaniya (Application of the Descent Vector Method to Decomposition Schemes for Solving Integer Linear Programming Problems), Kibernetika, 1984, no. 1, pp. 44–47.Google Scholar
  56. [56]
    Sergienko I.V., Lebedeva T.T., and Roshchin V.A., Priblizhennye metody resheniya diskretnykh zadach optimizatsii (Approximate Methods for Discrete Optimization Problems), Kiev: Naukova Dumka, 1980.Google Scholar
  57. [57]
    Shapiro J. Mathematical programming: structures and algorithms. N.Y.: J. Wiley and Sons, 1979.Google Scholar
  58. [58]
    Shcherbina O.A., O modifitsirovannom lokal’nom algoritme resheniya blochnykh zadach diskretnogo programmirovaniya (On a Modified Local Algorithm for Solving Block Discrete Programming Problems), Zh. Vychisl. Mat. Mat. Fiz., 1986, vol. 26, no. 9, pp. 1339–1349.MathSciNetzbMATHGoogle Scholar
  59. [59]
    Shepardson F. and Marsten R., A Lagrangean Relaxation Algorithm for the Two Duty Period Scheduling Problem, Manage. Sci., 1980, vol. 26, pp. 274–281.MathSciNetzbMATHCrossRefGoogle Scholar
  60. [60]
    Shilo V.P., Ob issledovanii odnogo klassa algoritmov tselochislennogo lineinogo programmirovaniya s bulevymi peremennymi (Analysis of One Class of Integer Linear Programming Algorithm with Boolean Variables), in Teoriya i programmnaya realizatsiya metodov diskretnoi optimizatsii. Sb. nauchnykh trudov (Theory and Program Implementation of Discrete Optimization Methods: Collection of Research Works ), Kiev, 1989, pp. 35–40.Google Scholar
  61. [61]
    Shlyk V.A., O teoretiko-gruppovom podkhode v tselochislennom lineinom programmirovanii (A Group-Theoretical Approach in Integer Linear Programming), Izv. Akad. Nauk SSSR, Ser. Tekh. Kibern., 1988, no. 1, pp. 94–105.Google Scholar
  62. [62]
    Shor N.Z., Metody minimizatsii nedifferentsiruemykh funktsii i ikh prilozheniya (Methods of Minimization of Nondifferentiable Functions and Their Applications), Kiev: Naukova Dumka, 1979.Google Scholar
  63. [63]
    Steinberg E. and Napier H., Optimal Multi-Level Lot Sizing for Requirements Planning Systems, Manage. Sci., 1980, vol. 26, pp. 1258–1271.zbMATHCrossRefGoogle Scholar
  64. [64]
    Sweeney D. and Murphy R., A Method of Decomposition for Integer Programs, Oper. Res., 1979, vol. 27, no. 6, pp. 1128–1141.MathSciNetzbMATHCrossRefGoogle Scholar
  65. [65]
    Tsarevskii N.A., Approksimatsionnyi dekompozitsionnyi algoritm dlya kombinatornoi zadachi razvitiya proizvodstvennykh moshchnostei otrasli promyshlennosti s blochnymi proizvodstvennymi ogranicheniyami. I (An Approximative Decomposition Algorithm for a Combinatorial Problem on the Development of Production Powers of an Industrial Branch with Block Production Constraints. 1), Izv. Akad. Nauk SSSR, Ser. Tekh. Kibern., 1984, no. 6, pp. 25–32.Google Scholar
  66. [66]
    Tsurkov V.I., Dekompozitsiya v zadachakh bol’shoi razmernosti (Decomposition in Problems of Large Dimension), Moscow: Nauka, 1981.Google Scholar
  67. [67]
    Tsurkov V.I., Blochoe tselochislennoe programmirovaniye (Block Integer Programming), in Chislennye metody i optimizatsiya. Materialy 4 simpoziuma (Numerical Methods and Optimization. Proceedings of the 4th Symposium), Tallinn, 1988, pp. 194–196.Google Scholar
  68. [68]
    Tsurkov V.I., Dekompozitsiya v blochnykh zadachakh s tselochislennymi peremennymi (Decomposition in Block Problems with Integer Variables), Izv. Akad. Nauk SSSR, Ser. Tekh. Kibern., 1990, no. 3, pp. 3–15.Google Scholar
  69. [69]
    Ul’m S.Yu., Metody dekompozitsii v zadachakh optimizatsii (Methods of Decomposition in Optimization Problems), Tallinn: Valgus, 1979.Google Scholar
  70. [70]
    Uzdemir A.P., Skhema posledovatel’noi dekompozitsii v zadachakh optimizatsii (A Scheme of Successive Decomposition in Optimization Problems), Avtom. Telemekh., 1980, no. 11, pp. 94–105.Google Scholar
  71. [71]
    Uzdemir A.P., Zadachi planirovaniya diskretnogo (shtuchogo) proizvodstva i chislennye metody ikh resheniya (Problems of Planning a Discrete Single-Piece Production and Numerical Methods for These Problems), Avtom. Telemekh., 1975, no. 9, pp. 115–122.MathSciNetGoogle Scholar
  72. [72]
    Van Roy T.J., Cross Decomposition for Mixed Integer Programming, Math. Programming, 1983, vol. 25, no. 1, pp. 46–63.MathSciNetzbMATHCrossRefGoogle Scholar
  73. [73]
    Volkovich V.L. and Voloshin A.F., Posledovatel’nyi podkhod k resheniyu zadach lineinogo chasticho-tselochislennogo programmirovaniya spetsial’noi struktury (A Sequential Approach to Solving Mixed-Integer Linear Programming Problems of Special Structure), Dokl. Akad. Nauk SSSR, Ser. Fiz.—Mat. Tekh. Nauk., 1987, no. 8, pp. 63–67.MathSciNetGoogle Scholar
  74. [74]
    Volkovich V.L. and Voloshin A.F., Ob odnoi skheme metoda posledovatel’nogo analiza i otseivaniya variantov (On One Scheme of the Method of Sequential Analysis and Screening of Variants), Kibernetika, 1978, no. 4, pp. 98–105.MathSciNetGoogle Scholar
  75. [75]
    Voloshin A.F. and Mashchenko S.O., Subeksponentsial’nyi algoritm resheniya zadachi o rantse (A Subexponential Algorithm for Solving a Knapsack Problem), Dokl. Akad. Nauk Ukr. SSR, 1986, no. 10, Ser. A, pp. 55–58.Google Scholar
  76. [76]
    Voloshin A.F., Nakhozhdenie suboptimal’nykh reshenii v diskretnykh optimizatsionnykh zadachakh metodom posledovatel’nogo analiza i otseivaniya variantov (Determination of Suboptimal Solutions in Discrete Optimization Problems by the Method of Sequential Analysis and Screening of Variants), in Vychislitel’nye aspekty v paketakh prikladnykh programm (Computational Aspects in Software Packages), Kiev: Inst. Kibern., Akad. Nauk Ukr. SSR, 1980, pp. 25–35.Google Scholar
  77. [77]
    Wolsey L.A., Integer Programming Duality: Price Functions and Sensitivity Analysis, Math. Programming, 1981, vol. 20, no. 2, pp. 173–195.MathSciNetzbMATHCrossRefGoogle Scholar
  78. [78]
    Yudin D.B., Zadachi i metody stokhasticheskogo programmirovaniya (Problems and Methods of Stochastic Programming), Moscow: Sov. Radio, 1979.zbMATHGoogle Scholar
  79. [79]
    Yudin D.V., Matematicheskie metody upravleniya v usloviyakh nepolnoi informatsii (Mathematical Control Methods under Incomplete Information), Moscow: Soy. Radio, 1974.Google Scholar
  80. [80]
    Yudin D.V., Zadachi i metody stokhasticheskogo programmirovaniya (Problems and Methods of Stochastic Programming), Moscow: Sov. Radio, 1979. Numerical Techniques for Stochastic Optimization, Berlin: Springer, 1988.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Vladimir Tsurkov
    • 1
  1. 1.Computing CenterRussian Academy of SciencesMoscowRussia

Personalised recommendations