A Proof that Euler Missed: Evaluating ξ(2) the Easy Way

  • Tom M. Apostol


R. Apéry [1] was the first to prove the irrationality of
$$\zeta \left( 3 \right) = \sum\limits_{n = 1}^\infty {\frac{1}{{{n^3}}}} $$


Mathematical INTElLIGENCER Straightforward Manner Short Proof Multiple Integral Double Integral 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    R. Apéry (1979) Irrationalité de;(2) et;(3). Astérisque 61:11–13. Paris: Societé Mathématique de France.Google Scholar
  2. 2.
    F. Beukers (1979) A note on the irrationality of C(2) and C(3), Bull. Lon. Math. Soc. 11:268–272.Google Scholar
  3. 3.
    F. Goldscheider (1913) Arch. Math. Phys. 20: 323–324.zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Tom M. Apostol
    • 1
  1. 1.California Institute of TechnologyPasadenaUSA

Personalised recommendations