The evolution of extended decimal approximations to π

  • J. W. WrenchJr.


In his historical survey of the classic problem of “squaring the circle,” Professor E. W. Hobson [1]* distinguished three distinct periods, characterized by fundamental differences in method, immediate aims, and available mathematical tools.


Mathematics Teacher Decimal Place Decimal Digit Desk Calculator Coupon Collector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. W. HOBSON, Squaring the Circle,a Hie-tory of the Problem (Cambridge, 1913; reprinted by Chelsea Publishing Company, New York, 1953 ).Google Scholar
  2. 2.
    J. H. LAMBERT, “Mémoire sur quelques propriétés rémarquables des quantités transcendentes circulaires et logarithmiques,” Histoire de l’Académie de Berlin, 1761 (1768).Google Scholar
  3. 3.
    F. LINDEMANN, “Veber die Zahl r,” Mathematische Annalen, 20 (1882), 213–225.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    J. WALLIS, Arithmetica Infinitorum (1655).Google Scholar
  5. 5.
    R. C. ARCHIBALD, Outline of the History of Mathematics ( 6th ed.; Buffalo, N. Y.: The Mathematical Association of America, 1949 ), p. 40.Google Scholar
  6. 6.
    Letter from Newton to Oldenburg dated October 24, 1676.Google Scholar
  7. 7.
    E. BEUTEL, Die Quadratur des Kreises (Leip zig, 1920 ), p. 40. See also E. W. Hobson,’ p. 39.Google Scholar
  8. 8.
    H. SHEnwiN, Mathematical Tables (London, 1705), p. 59.Google Scholar
  9. 9.
    F. DE LAGNY, “Mémoire Sur la Quadrature du Circle, Sr sur la mesure de tout Arc, tout Secteur, Sr tout Segment donné,” Histoire de l’Académie Royale des Sciences, 1719 (Paris, 1721 ), pp. 135–145.Google Scholar
  10. 10.
    Y. MIRAMI, The Development of Mathematics in China and Japan (Leipzig, 1913), p. 202 and p. 141.Google Scholar
  11. 11.
    G. VEGA, Thesaurus Logarithmorum Completus (Leipzig, 1794; reprinted by G. E. Stechert Sc Co., New York, 1946 ), p. 633.Google Scholar
  12. 12.
    W. RUTHERFORD, “Computation of the Ratio of the Diameter of a Circle to its Circumference to 208 places of figures,” Philosophical Transactions of the Royal Society of London, 131 (1841), 281–283.CrossRefGoogle Scholar
  13. 13.
    Z. DARSE, “Der Kreis-Umfang für den Durchmesser 1 auf 200 Decimalstellen berechnet,” Journal far die reine und angewandte Mathematik, 27 (1844), 198.Google Scholar
  14. 14.
    Philosophical Transactions of the Royal Society of London,46 (1776), 476–492.Google Scholar
  15. 15.
    W. LEHMANN, “Beitrag zur Berechnung der Zahl r, welche das Verhältniss des Kreis-Durchmessers zum Umfang ausdrückt,” Archiv der Mathematik und Physik, 21 (1853), 121–174.Google Scholar
  16. 16.
    Y. MIRAMI,“ pp. 141–142.Google Scholar
  17. 17.
    Nova Acta Academiae Scientiarum Imperialis Petropolitanae,9 (1790), 41.Google Scholar
  18. 18.
    Astronomische Nachrichten,25 (1847), col. 207–210.Google Scholar
  19. 19.
    E. FRISKY, “On the calculation of r,Messenger of Mathematics,2 (1873), 114118.Google Scholar
  20. 20.
    S. L. LONEY, Plane Trigonometry (Cambridge, 1893 ), p. 277.Google Scholar
  21. 21.
    C. ST6RMER, “Sur l’application de la théorie des nombres entiers complexes à la solution en nombres rationnels x,, xs,, x,,, ci, c:, •, c,,, k de l’équation c, arctg xi-1-c: arctg x2+ +c„ arctg x„ =kr/4,” Archiv for Mathematik og Naturvidenekab, 19 (1896), 70.Google Scholar
  22. 22.
    D. F. FERGUSON, “Value of r,” Nature, 157 (1946), 342..See also D. F. Ferguson, “Evaluation of r. Are Shanks’ figures correct?” Mathematical Gazette, 30 (1946), 8990.Google Scholar
  23. 23.
    R. C. ARCHIBALD, “Approximations to r,” Mathematical Tables and other Aids to Computation,2 (1946–1947), 143–145.Google Scholar
  24. 24.
    L. B. SMITH, J. W. WRENCH, JR., and D. F. FERGUSON, “A New Approximation to r,” ibid.,2 (1946–1947), 245–248.Google Scholar
  25. 25.
    D. F. FERGUSON and J. W. WRENCH, JR., “A New Approximation to r (conclusion),” ibid., 3 (1948–1949), 18–19. See also R. Lié-nard, “Constantes mathématiques et système binaire,” Intermédiaire des Recherches Mathématiques, 5 (1948), 75.Google Scholar
  26. 26.
    K. II. SCHELLBACH, “Ober den Ausdruck r = (2/i) log i, Journal fiir die reine undange wandte Mathematik, 9 (1832), 404–406.zbMATHCrossRefGoogle Scholar
  27. 27.
    C. C. CAMP, “A New Calculation of,r,” American Mathematical Monthly, 33 (1926), 474.MathSciNetCrossRefGoogle Scholar
  28. 28.
    D. H. LEHMER, “On Arccotangent Relations for r,” ibid., 45 (1938), 657–664.Google Scholar
  29. 29.
    G. E. FELTON, “Electronic Computers and Mathematicians,” Abbreviated Proceedings of the Oxford Mathematical Conference for Schoolteachers and Industrialists at Trinity College, Oxford, April 8–18, 1957,p. 12–17; footnote, p. 12–53.Google Scholar
  30. 30.
    C. F. GAUSS, Werke (Göttingen, 1863; 2nd ed., 1876), Vol.. 2, p. 499–502.Google Scholar
  31. 31.
    J. P. BALLANTINE, “The Best (?) Formula for Computing r to a Thousand Places,” American Mathematical Monthly, 46 (1939), 499–501.MathSciNetCrossRefGoogle Scholar
  32. 32.
    W. JONES, Synopsis palmiorum matheseos (London, 1706), p. 263.Google Scholar
  33. 33.
    W. RUTHERFORD, “On the Extension of the value of the ratio of the Circumference of a circle to its Diameter,” Proceedings of the Royal Society of London, 6 (1850–1854), 273–275. See also Nouvelles Annales des Mathématiques, 14 (1855), 209–210.Google Scholar
  34. 34.
    W. SHANKS, Contributions to Mathematics, comprising chiefly the Rectification of the Circle to 607 Places of Decimals (London, 1853 ).Google Scholar
  35. 35.
    W. SHANKS, “On the Extension of the Nu merical Value of r,” Proceedings of the Royal Society of London, 21 (1873), 318.CrossRefGoogle Scholar
  36. 36.
    W. SHANKS, “On certain Discrepancies in the published numerical value of r,” ibid., 22 (1873), 45–46.zbMATHGoogle Scholar
  37. 37.
    Archiv der Mathematik und Physik,21 (1853), 119; 22 (1854), 473; 23 (1854), 475–476; 25 (1855), 471–472 (posthumous). See also Nouvelles Annales des Mathémati-ques,13 (1854), 418–423.Google Scholar
  38. 38.
    Comptes Rendus de l’Académie des Sciences de Paris,Vol. 146, 1908. See also L’ Inter médiaire des Mathématiciens,27 (1920), 108–109, and F. J. Duarte, Monografia sobre los Nilmeros r y e (Caracas, 1949).Google Scholar
  39. 39.
    H. S. UHLER, “Recalculation and Extension of the Modulus and of the Logarithms of 2, 3, 5, 7, and 17,” Proceedings of the National Academy of Sciences, 26 (1940), 205–212.MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    ). H. LEHMER, Review 275, Mathematical 7’ables and other Aids to Computation,2 (1946–1947), 68–69.Google Scholar
  41. 41.
    J. W. WRENCH, JR., and L. B. SMITH, “Val-ues of the terms of the Gregory series for arccot 5 and arccot 239 to 1150 and 1120 decimal places, respectively,” ibid., 4 (1950), 160–161.Google Scholar
  42. 42.
    G. REITWIESNER, “An ENIAC Determina tion of r and e to more than 2000 Decimal Places,” ibid., 4 (1950), 11–15.Google Scholar
  43. 43.
    S. C. NICHOLSON and J. JEENEL, “Some Comments on a NORC Computation of r,” ibid., 9 (1955), 162–164.zbMATHGoogle Scholar
  44. 44.
    F. GENUYS, “Dix milles décimales de r,” Chi f fres, 1 (1958), 17–22.Google Scholar
  45. 45.
    P. S. JONES, “What’s New About r?,” THE MATHEMATICS TEACHER, 43 (1950), 120–122Google Scholar
  46. 46.
    A. DE MORGAN, A Budget of Paradoxes (1st ed., 1872; 2nd ed., Chicago: The Open Court Publishing Company, 1915), Vol. 2, p. 65. See also James R. Newman, The World of Mathematics (New York: Simon nd Schuster, 1956), Vol. 4, pp. 2379–2380.Google Scholar
  47. 47.
    E. B. EscoTT, Question 1154, L’Inter médiaire des Mathématiciens, 4 (1897), 221.Google Scholar
  48. 48.
    N. C. METROPOLIS, G. REITWIESNER, and J. VON NEUMANN, “Statistical Treatment of the Values of First 2000 Decimal Digits of e and r Calculated on the ENIAC,” Mathe- matical Tables and other Aids to Computa tion, 4 (1950), 109–111.CrossRefGoogle Scholar
  49. 48.
    N. C. METROPOLIS, G. REITWIESNER, and J. VON NEUMANN, “Statistical Treatment of the Values of First 2000 Decimal Digits of e and r Calculated on the ENIAC,” Mathe tion, 4 (1950), 109–111.Google Scholar
  50. 49.
    R. E. GREENWOOD, “Coupon Collector’s Test for Random Digits,” ibid., 9 (1955), 1–5.Google Scholar
  51. 50.
    F. BUKOVSKY, “The Digits in the Decimal Form of r,” The Mathematical Gazette, 33 (1949), 291.CrossRefGoogle Scholar
  52. 51.
    W. HOPE-JONES, “Surprising,” ibid., Vol. 35, 1951.Google Scholar
  53. 52.
    E. H. NEVILLE, “The Digits in the Deci-mal Form of r,” ibid., 35 (1951), 44–45.Google Scholar
  54. 53.
    B. C. BROOKES, “On the Decimal for r,” ibid., 36 (1952), 47–48.Google Scholar
  55. 54.
    G. H. HARDY and E. M. WRIGHT, An Intro duction to the Theory of Numbers (Oxford, 1938 ), pp. 123–127.Google Scholar
  56. 55.
    I. NIVEN, Irrational Numbers, Carus Mon 55. I. ograph No. 11 (Buffalo, N. Y.: The Mathe matical Association of America, 1956 ), p. 112.Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • J. W. WrenchJr.
    • 1
  1. 1.Applied Mathematics LaboratoryDavid Taylor Model BasinUSA

Personalised recommendations