Advertisement

The Chronology of Pi

  • Herman C. Schepler

Abstract

3000 B. C. The Pyramids (Egypt). 3 1/7(3.142857.....).The sides and heights of the pyramids of Cheops and of Sneferu at Gizeh are in the ratio 11:7, which makes the ratio of half the perimeter to the height 3 1/7. In 1853, H. C. Agnew, Esq., London, published a letter from Alexandria on evidence of this ratio found in the pyramids being connected or related to the problem of the quadrature of the circle.

Keywords

Regular Polygon Circle Digit Inscribe Polygon Mathematic Magazine Ballistic Research Laboratory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    Ball, W. W. R. Mathematical Recreations and Problems. (11th ed.) Rev. by H. S. M. Coxeter, New York, Macmillan, 1942.Google Scholar
  2. (2).
    Ball, W. W. R. A short account of the History of Mathematics. London, Macmillan and Co., limited 1919.Google Scholar
  3. (3).
    Bell, Eric Temple. Development of Mathematics. McGraw Hill, 1945.Google Scholar
  4. (4).
    Cajori, Florian. History of Mathematical Notations. Vol. II. Open Court Publ. Co., 1929.zbMATHGoogle Scholar
  5. (5).
    Cajori, Florian. History of Mathematics. New York, Macmillan, 1938.Google Scholar
  6. (6).
    Condon, Edward. Curiosities of Mathematics. Girard, Kansas, Haldeman. Julius, 1925.Google Scholar
  7. (7).
    De Morgan, Augustus. A Budget of Paradoxes. Chicago, Open Court Pub. Co., 1940.Google Scholar
  8. (8).
    Fink, Karl. Brief History of Mathematics. ( Trans.) Chicago, Open Court Pub. Co., 1940.Google Scholar
  9. (9).
    Gould, Sylvester C. What is the value of Pi. Manchester, N. H., “Notes and Queries”, 1888.Google Scholar
  10. (10).
    Hobson, E. W. Squaring the Circle. Cambridge Univ. Press, 1913.Google Scholar
  11. (11).
    Hogben, Lancelot. Mathematics for the Million. Norton, 1943.Google Scholar
  12. (12).
    Kasner, Edward. Mathematics and the Imagination. Simon and Séhuster, 1940.Google Scholar
  13. (13).
    Klein, Felix. Famous Problems in Elementary Geometry. Ginn and Co., 1897.Google Scholar
  14. (14).
    Larrett, Denham. The Story of Mathematics. New York, Greenberg, 1926.Google Scholar
  15. (15).
    Licks, H. E. Recreations in Mathematics. New York, Van Nostrand, 1931.Google Scholar
  16. (16).
    Merrill, Helen A. Mathematical Excursions. Boston, Bruce Humphries, Inc., 1934.Google Scholar
  17. (17).
    Myers, William A. Quadrature of the Circle. (Translation of Montucla). 2nd Ed. Cincin., 1874.Google Scholar
  18. (18).
    Phin, John. Seven Follies of Science. Van Nostrand, 1911.Google Scholar
  19. (19).
    Rupert, William W. Famous Geometrical Theorems and Problems. Boston, D. C. Heath, 1901.zbMATHGoogle Scholar
  20. (20).
    Sanford, Vera. Short History of Mathematics. Houghton Mifflin, 1930.Google Scholar
  21. (21).
    Schubert, Hermann. Mathematical Essays and Recreations. (Trans. by T. J. McCormack.) Chicago, Open Court Pub. Co., 1910.Google Scholar
  22. (22).
    Schubert, Hermann. Squaring of the circle. Smithsonian Institution Annual Report, 1890.Google Scholar
  23. (23).
    Smith, David Eugene. History of Mathematics. Boston, New York, Ginn and Co. 1923.Google Scholar
  24. (24).
    Smith, David Eugene. History and Transcendence of Pi. Monograms on Modern Mathematics. W. J. A. Young, Longmans Green, 1911.Google Scholar
  25. (25).
    Steinhaus, H. Mathematical Snapshots. Warsaw, New York, G. E. Stechert. 1938.Google Scholar
  26. (26).
    Sullivan, John William Navin. History of Mathematics in Europe. Oxford University, 1925.Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Herman C. Schepler
    • 1
  1. 1.Stanford Research InstituteStanfordUSA

Personalised recommendations