# On the Use of the Discovered Factors to Sum Infinite Series

• Lennart Berggren
• Jonathan Borwein
• Peter Borwein

## Abstract

If 1 + Az + Bz 2 + Cz 3 + Dz 4+ ... = (1 + αz)(1 + βz)(1 + γz)(1 + δz) ..., then these factors, whether they be finite or infinite in number, must produce the expression 1 + Az + Bz 2+ Cz 3+ Dz 4+ ..., when they are actually multiplied. It follows then that the coefficient A is equal to the sum α + β + γ + δ + ε + .... The coefficient B is equal to the sum of the products taken two at a time. Hence B = αβ + αγ + αδ + βγ + βδ + γδ + .... Also the coefficient C is equal to the sum of products taken three at a time, namely C = αβγ + αβδ + βγδ + αγδ + .... We also have D as the sum of products taken four at a time, and E is the sum of products taken five at a time, etc. All of this is clear from ordinary algebra.

## Keywords

Previous Series Ordinary Algebra Equal Exponent
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.