Skip to main content

Regulation of p53 Function in Normal and Malignant Cells

  • Chapter
Advances in Nutrition and Cancer 2

Abstract

Tumors arise from single cells that develop into large populations sharing a series of genetic alterations. The single phenotypic feature that best characterizes a transformed cell is its ability to proliferate indefinitely when left undisturbed.1 The recognition of specific genes that modulate proliferation, has led to studies on the cell cycle.2 Homeostasis has a great importance in the development of tumors and is regulated by a balance among proliferation, the arrest of growth and programmed death (apoptosis).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bishop J.M., (1987). The molecular genetics of cancer. Science, 235: 305–311.

    Article  PubMed  CAS  Google Scholar 

  2. Follette P.J. and O’Farrell P.H., (1997). Connecting cell behavior to pattering: lessons from the cell cycle. Cell, 88: 309–314.

    Article  PubMed  CAS  Google Scholar 

  3. Bukholm I.K., Nesland J.M., Karesen R., Jacobsen U., and Borresen A.L., (1997). Interaction between bcl-2 and p21 (WAF1/CIP1) in breast carcinomas with wild-type p53. Int. J. Cancer, 73 (1): 38–41.

    Article  PubMed  CAS  Google Scholar 

  4. Lane D.P., (1992). P53, the guardian of the genome. Nature, 358: 15–16.

    Article  PubMed  CAS  Google Scholar 

  5. Slichenmyer W.J., Nelson W.G., Slebos R.J., and Kastan M.B., (1993). Loss of a p53-associated G1 Checkpoints Does Not Decrease Cell Survival Following DNA Damage. Cancer Res., 53: 4164–4168.

    PubMed  CAS  Google Scholar 

  6. Malkin D., (1994). Germline p53 mutations and heritable cancer. Annu. Rev. Genet., 28: 443–465.

    Article  PubMed  CAS  Google Scholar 

  7. Prives C., (1994). How loops, ß Sheets, and a Helices help us to understand p53. Cell, 78: 543–546.

    Article  PubMed  CAS  Google Scholar 

  8. Levine A.J., (1997). p53, the cellular gatekeeper for growth and division. Cell, 88:323–331.

    Google Scholar 

  9. Lee S., Elenbaas B., Levine A., and Griffith J., (1995). p53 and its 14kDa C-terminal domain recognize primary DNA damage in the form of insertion/deletion mismatches. Cell, 81: 1013–1020.

    Google Scholar 

  10. Komarova E.A., Zelnick R.C., Chin D., Zeremski M., and Gudkov A.V., (1997). Intracellular localization of p53 tumor suppressor protein in y-irradiated cells is cell cycle regulated and determined by the nucleus. Cancer Res., 57: 5217–5220.

    PubMed  CAS  Google Scholar 

  11. Molinari A.M., Armetta I., Napolitano M., Schiavulli M., Bontempo R, and e Puca G.A. La capacità dell’antioncogene p53 di legare specifiche sequenze di DNA è modulata in vitro dalla presenza di oligonucleotidi. XXII Congresso Nazionale SIP.

    Google Scholar 

  12. Lane D., (1998). Awakening angels. Nature, 394: 616–617.

    Article  PubMed  CAS  Google Scholar 

  13. Woo R.A., McLure K.G., Lees-Miller S.P., and Lee R, (1998). DNA-dependent protein kinase acts upstream of p53 in response to DNA damage. Nature, 394: 700–704.

    Article  PubMed  CAS  Google Scholar 

  14. Waterman M.J., Stavridi E.S., Waterman J.L., and Halazonetis T.D., (1998). ATM–dependent activation of p53 involves dephosphorylation and association with 14–3–3 proteins. Nature Genet., 19 (2): 175 – 178.

    Article  PubMed  CAS  Google Scholar 

  15. Almong N. and Rotter V., (1997). Involement of p53 in cell differentiation and development. Biochimica et Biophysica Acta, 1333 F1 - F27.

    Google Scholar 

  16. Prokocimer M. and Rotter V., (1994). Structure and Function of p53 in Normal Cells and Their Aberrations in Cancer Cells: Projection on the Hematologic Cell Lineages. Blood, 84: 2391–2411.

    PubMed  CAS  Google Scholar 

  17. Imamura J., Miyoshi I., and Koffler R, (1994). p53 in Hematologic Malignancies. Blood, 84: 2412–2421.

    Google Scholar 

  18. Soddu S., Blandino G., Scardigli R., Coen S., and Sacchi A., (1996). Interference with p53 Protein Inhibits Hematopoietic and Muscle Differentiation. The Journal of Cell Biology, 134: 193–204.

    Article  PubMed  CAS  Google Scholar 

  19. Amesterdam A., Keren-Tal I., and Aharoni D., (1996). Ross-talk between cAMP and p53-generated signals in induction of differentiation and apoptosis in steroidogenic granulosa cells. Steroid 61: 252–256.

    Article  Google Scholar 

  20. Eizenberg O., Gottlieb E., and Schwartz M., (1996). p53 plays a Regulatory Role in Differentiation and Apoptosis of Central Nervous System-Associated Cells. Molecular and Cellular Biology, 16: 5178–5185.

    Google Scholar 

  21. Schmid P., Lorenz A., Hameister H., and Montenarh M., (1991). Expression of p53 during mouse embryogenesis. Development, 113: 857–865.

    PubMed  CAS  Google Scholar 

  22. Sjoblom T. and Landetie J., (1996). Expression of p53 in normal and y-irradiated rat testis suggests a role for p53 in meiotic recombination and repair. Oncogene, 12: 2499–2505.

    PubMed  CAS  Google Scholar 

  23. Mukhopadhyay D., Tsiokas L., and Sukhatme V.P., (1995). Wild-Type p53 and v-Src Exert Opposing Influences on Human Vascular Endothelial Growth Factor Gene Expression. Cancer Research 55: 6161–6165.

    PubMed  CAS  Google Scholar 

  24. Dameron K.M., Volpert O.V., Tainsky M.A., and Bouck N., (1994). Control of Angiogenesis in Fibroblasts by p53 Regulation of Thrombospondin-1. Science 256: 1582–1584.

    Article  Google Scholar 

  25. Nelson W.G. and Kastan M.B., (1994). DNA Strand Breaks: the DNA Template Alterations That Trigger p53-Dependent DNA Damage Response Pathways. Molecular and Cellular Biology, 14: 1815–1823.

    PubMed  CAS  Google Scholar 

  26. Aloni-Gristein R., Zan-Bar I., Alboum I., and Rotter V., (1993). Wilde type p53 functions as a control protein in the differentiation pathway of the B-cell linage. Oncogene, 8: 3297–3305.

    Google Scholar 

  27. Zhan Q., Chen I.T., Antinore M.J., and Fornace A.J., (1998). Tumor suppressor p53 can partecipate in transcriptional induction of the GADD45 promoter in absence of direct DNA binding. Mol. Cell Biol., May 18 (5): 2768–2778.

    CAS  Google Scholar 

  28. Zauberman A., Barak Y., Ragimov N., Levy N., and Oren M., (1993). Sequence-specific DNA binding by p53: identification of target sites and lack of binding to p53-MDM2 complexes. The EMBO Journal, 12 (7): 2799–2808.

    PubMed  CAS  Google Scholar 

  29. Cayrol C., Knibiehler M., and Ducommum B., (1998). p21 binding to PCNA causes G1 and G2 cell cycle arrest in p53-deficient cells. Oncogene, 16: 311–320.

    Google Scholar 

  30. Bates S., Phillips C., (1998). p14 ARF links the tumor suppressor RB and p53. Nature, 395: 124–125.

    Google Scholar 

  31. Guillouf C., Rosselli E, Krishnaraju K., Moustacchi E., Hoffman B., and Liebermann D.A., (1995). p53 involvement in control of G2 exit of the cell cycle: role in DNA damage-induced apoptosis. Oncogene, 10: 2263–2270.

    Google Scholar 

  32. Huang Y., Ray S., Reed J.C., Ibrado A.M., Tang C., Nawabi A., and Bhalla K., (1997). Estrogen increases intracellular p26Bcl-2 to p21Bax ratios and inihibits taxol-induced apoptosis of human breast cancer MCF-7 cells. Breast Cancer Res. Treat., 42 (1): 73–81.

    Article  CAS  Google Scholar 

  33. Miyashita T. and Reed J.C., (1995). Tumor Suppressor p53 is a direct transcriptional activator of the human bax gene. Cell, 80: 293–299.

    Article  PubMed  CAS  Google Scholar 

  34. Boise L.H., Gonzales-Garcia M., Postema C.E., Ding L., and Thompson C.B., (1993). bel-x, a bcl-2 related gene that functions as a dominant regolator of apoptotic cell death. Cell, 74: 597–608.

    Google Scholar 

  35. Miyashita T., Harigai M., Hanada M., and Reed J.C., (1993). Identification of a p53-dependent negative response element in the bcl-2 gene. Cancer Research, 54: 3131–3135.

    Google Scholar 

  36. Bian J. and Sun Yi, (1997). p53CP, a putative p53 competing protein that specifically binds to the consensus p53 DNA binding sites: A third member of the p53 family?. Proc. Natl. Acad. Sci. USA, 94: 14753–14758.

    Google Scholar 

  37. Osada M., Ohba M., Kawahara C., and Ikawa S., (1998). Cloning and functional analysis of human p51, which structurally and functionally resembles p53. Nature Medicine vol. 4 n. 7: 839–843.

    Article  PubMed  CAS  Google Scholar 

  38. Trink B., Okami K., Wu L., Sriuranpong V., Jen J., and Sidransky D., (1998). A new human p53 homologue. Nature Medicine, 4 (7): 747.

    Article  PubMed  Google Scholar 

  39. Osada M., Ohba M., Kawahara C., and Ikawa S, (1998). Cloning and functional analysis of human p51, which structurally and functionally resembles p53. Nature Medicine 4 (7): 839–843.

    Article  PubMed  CAS  Google Scholar 

  40. Liebermann D.A., Hoffman B., and Steinman R.A., (1995). Molecular controls of growth arrest and apoptosis: p53-dependent and independent pathways. Oncogene, 11: 199–210.

    PubMed  CAS  Google Scholar 

  41. Avantaggiati M.L., Ogryzko V., Gardner K., Giordano A., Levine A.S., and Kelly K., (1997). Recruitment of p300/CBP in p53-Dependent Signal Pathways. Cell, 89: 1175–1184.

    Article  PubMed  CAS  Google Scholar 

  42. Lee Chang-Woo, Sorensen T.S., Shikama N., and La Thangue N.B., (1998). Functional interplay between p53 and E2F through co-activator p300. Oncogene, 16: 2695–2710.

    Article  Google Scholar 

  43. Dickson R.B. and Lippman M.E., (1995). Growth factors in breast cancer. Endocrine Reviews, 16 (5): 559–583.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tortora, V. et al. (1999). Regulation of p53 Function in Normal and Malignant Cells. In: Zappia, V., Della Ragione, F., Barbarisi, A., Russo, G.L., Iacovo, R.D. (eds) Advances in Nutrition and Cancer 2. Advances in Experimental Medicine and Biology, vol 472. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3230-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3230-6_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3331-7

  • Online ISBN: 978-1-4757-3230-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics