Cell Division Cycle Alterations and Human Tumors

  • Fulvio Della Ragione
  • Adriana Borriello
  • Valentina Della Pietra
  • Valeria Cucciolla
  • Adriana Oliva
  • Alfonso Barbarisi
  • Achille Iolascon
  • Vincenzo Zappia
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 472)


A large series of evidence has conclusively demonstrated that the development and progression of a cancer are due to the accumulation of a number of genetic alterations which finally result in a full malignant phenotype. This complex phenomenon is clearly illustrated by colorectal tumors, which often require more than a decade to be clinically evident and at least seven genetic events for completion.1


Esophageal Squamous Cell Carcinoma Hairy Cell Leukemia Cell Division Cycle CDKN2A Gene CDK4 Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kinzler, K.W. and Vogelstein, B. Lessons from hereditary colorectal cancer. Cell, 87, 159–170, 1996.PubMedCrossRefGoogle Scholar
  2. 2.
    Modrich, P. and Lahue, R. Mismatch repair in repliation fidelity, genomic recombination, and cancer biology. Ann. Rev. Biochem., 65, 101–133, 1996.PubMedCrossRefGoogle Scholar
  3. 3.
    Prolla T. DNA mismatch repair and cancer. Curr. Opinion in Cell Biol., 10, 311–316, 1998.CrossRefGoogle Scholar
  4. 4.
    Davis, T.W., Wilson-Van Patten, C., Meyers, M., Kunugi, K.A., Cuthil, S., Reznikoff, C., Garces, C., Boland, C.R., Kinsella, T.J., Fishel, R., and Boothma, D.A. Defective expression of the DNA mismatch repair protein, MLH1 alters G2-M cell cycle checkpoint arrest following ionizing radiation. Cancer Res., 58, 767–778, 1998.PubMedGoogle Scholar
  5. 5.
    Nicolaides, N.C., Littman, S.J.P., Kinzler, K.W., and Vogelstein, B. A naturally occurring hPMS2 mutation can confer a dominant negative mutator phenotype. Mol. Cell. Biol., 18, 1635–1641, 1998.PubMedGoogle Scholar
  6. 6.
    Lane, D. Awakening angels. Nature, 394, 616–617, 1998.PubMedCrossRefGoogle Scholar
  7. 7.
    Woo, R.A., McLure, K.G., Lees-Miller, S.P., and Lee, P. DNA-dependent protein kinase acts upstream of p53 in response to DNA damage. Nature, 394, 700–704, 1998.PubMedCrossRefGoogle Scholar
  8. 8.
    Pardee, A.B. Gl events and regulation of cell proliferation. Science, 246, 603–608, 1989.PubMedCrossRefGoogle Scholar
  9. 9.
    Nurse P. Ordering S phase and M phase in the cell cycle. Cell, 79, 547–550, 1994.PubMedCrossRefGoogle Scholar
  10. 10.
    Sherr, C.J. G1 phase progression: cycling on cue. Cell, 79, 551–555, 1994.PubMedCrossRefGoogle Scholar
  11. 11.
    Xiong, Y., Hannon, G.J., Zhang, H., Casso, D., Kobayashi, R., and Beach, D. p21 is a universal inhibitor of cyclin kinases. Nature, 366, 701–704, 1993.PubMedCrossRefGoogle Scholar
  12. 12.
    Toyoshima, H. and Hunter, T. p27, a novel inhibitor of G1 cyclin-Cdk protein kinase activity, is related to p21. Cell, 78, 67–74, 1994.PubMedCrossRefGoogle Scholar
  13. 13.
    Lee, M.-H., Reynisdottir, I., and Massagué, J. Cloning of p57, a cyclin-dependent kinase inhibitor with unique domain structure and tissue distribution. Genes and Dev., 9, 639–649, 1995.PubMedCrossRefGoogle Scholar
  14. 14.
    Serrano, M., Hannon, G.J., and Beach, D. A new regulatory motif in cell cycle control causing specific inhibition of cyclin D/CDK4. Nature, 266, 122–126, 1993.Google Scholar
  15. 15.
    Hannon, G.J. and Beach, D. p15NK4B is a potential effector of TGF-13-induced cell cycle arrest. Nature, 371, 257–260, 1994.PubMedCrossRefGoogle Scholar
  16. 16.
    Guan, K.-L., Jenkins, C.W., Li, Y., Nichols, M.A., Wu, X., O’Keefe, C.L., Matera, A.G., and Xiong, Y. Growth suppression by p18, a p161NK4s and p14NK4B/MTS2-related CDK6 inhibitor, correlates with wild-type pRb function. Genes and Dev., 8, 2939–2952, 1994.PubMedCrossRefGoogle Scholar
  17. 17.
    Chan, F.K.M., Zhang, J., Cheng, L., Shapiro, D.N., and Winoto, A. Identification of human and mouse p19, a novel CDK4 and CDK6 inhibitor with homology to p161NK4. Mol. Cell. Biol., 15, 2682–2688, 1995.PubMedGoogle Scholar
  18. 18.
    Steiman, R.A., Hoffman, B., Iro, A., Guillouf, C., Liebermann, D.A., and El-Houssein, M.E. Induction of p21 (WAF-1/CIP1) during differentiation. Oncogene, 9, 3389–3396, 1994.Google Scholar
  19. 19.
    Nobori, T., Miura, K., Wu, A.K., Luis, K., Takabashi, K., and Carson, D.A. Deletion of the cyclindependent kinase 4 inhibitor gene in multiple human cancers. Nature, 368, 753–756, 1994.PubMedCrossRefGoogle Scholar
  20. 20.
    Kamb, A., Gruis, N.A., Weaver-Feldhaus, J., Liu, Q., Harshman, K., Tavitgian, S.V., Stockert, E., Day, R.S., Johnson, B.E., and Skolnick, M.H. A cell cycle regulatory potentially involved in genesis of many tumor types. Science, 264, 436–440, 1994.PubMedCrossRefGoogle Scholar
  21. 21.
    Wang, J.Y.J., Knudsen, E.S., and Welch, P.J. The retinoblastoma tumor suppressor protein. Adv. Cancer Res., 64, 25–85, 1994.PubMedCrossRefGoogle Scholar
  22. 22.
    Sanchez, I. and Dynlacht, B.D. Transcriptional control of the cell cycle. Curr. Opin. Cell Biol., 8, 318–324, 1996.CrossRefGoogle Scholar
  23. 23.
    Zarkowska, T., Harlow, E., and Mittnacht, S. Monoclonal antibodies specific for underphosphorylated retinoblastoma protein identify a cell cycle regulated phosphorylation site targeted by CDKs. Oncogene, 14, 249–254, 1997.PubMedCrossRefGoogle Scholar
  24. 24.
    Mittnacht, S. Control of pRB phosphorylation. Curr. Opin Gen. Dev., 8, 21–27, 1998.CrossRefGoogle Scholar
  25. 25.
    Nelson, D.A., Krucker, N.A., and Ludlow, J.W. High molecular weight protein phosphatase type 1 dephosphorylates the retinoblstoma protein. J. Biol. Chem., 272, 4528–4535, 1997.PubMedCrossRefGoogle Scholar
  26. 26.
    Quelle, D.E., Zindy, E, Ashmun, R.A., and Sherr, C.J. Alternative reading frames of the INK4a tumor suppressor gene encodes two unrelated proteins capable inducing cell cycle arrest. Cell, 83, 993–1000, 1995.PubMedCrossRefGoogle Scholar
  27. 27.
    Zhang, Y., Xiong, Y., and Yarbrough, W.G. ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletionimpairs both the Rb and p53 tumor suppression pathways. Cell, 92, 725–734, 1998.PubMedCrossRefGoogle Scholar
  28. 28.
    Pomerantz, J., Schreiber-Agus, N., Liegeois, N.J., Silverman, A., Alland, L., Chin, L., Potes, J., Chen, K., Orlow, I., Lee, H.W., Cordon-Cardo, C., and DePinho, R.A. The Ink4a tumor suppressor gene product, pl9Arf, interacts with MDM2 and neutralizes MDM2’s inhibition of p53. Cell, 92, 713–723, 1998.PubMedCrossRefGoogle Scholar
  29. 29.
    Palmero, I., Pantoja, C., and Serrano, M. p19ARF links the tumour suppressor p53 to Ras. Nature, 395, 125–126, 1998.PubMedCrossRefGoogle Scholar
  30. 30.
    Bates, S., Phillips, A.C., Clark, RA., Stott, E, Peters, G., Ludwig, R.L., and Vousden, K.H. p14ARF links the tumour suppressors RB and p53. Nature, 395, 124–125, 1998.PubMedCrossRefGoogle Scholar
  31. 31.
    Serrano M., Lee, H.-W., Chin, L., et al. Role of the INK4 locus in tumor suppression and cell mortality. Cell, 85, 27–38, 1996.PubMedCrossRefGoogle Scholar
  32. 32.
    Okamoto, A., Demetrick, D.J., Spillare, E.A., Hagiwara, K., Hussain, S.P., Bennett, W.P., Forrester, K., Gerwin B., Serrano, M., Beach, D.H., and Harris C.C. Mutations and altered expression of pl61NK4A in human cancer. Proc. Natl. Acad. Sci. USA, 91, 11045–11049, 1994.PubMedCrossRefGoogle Scholar
  33. 33.
    Della Ragione, E, Mercurio, C., and lolascon, A. Cell cycle regulation and human leukemias: the role of p161NK4 gene inactivation in the development of human acute lymphoblastic leukemia. Haematologica, 80, 562–573, 1995.Google Scholar
  34. 34.
    Loda, M., Cukor, B., Tam, S.W., Lavin, R, Fiorentino, M., Draetta, G.F., Jessup, J.M., and Pagano, M. Increased proteasome-dependent degradation of the cyclin-dependent kinase inhibitor p27 in aggressive coclorectal arcinomas. Nature Medicine, 3, 231, 1997.PubMedCrossRefGoogle Scholar
  35. 35.
    Catzavelos, C., Bhattacharya, N., Ung, Y.C., Wilson, J.A., Ronacari, L., Sandhu, C., Yeger, H., MoravaProtzner, I., Kapusta, L., Franssen, E., Pritchard, K.I., and Slingerland, J.M. Decreased levels of the cell-cycle inhibitor p27 protein: prognostic implications in primary breast cancer. Nature Medicine, 3, 227, 1997.PubMedCrossRefGoogle Scholar
  36. 36.
    Esposito, V., Baldi, A., De Luca, A., Groger, A.M., Loda, M., Giordano, G.G., Caputi, M., Baldi, E, Pagano, M., and Giordano, A. Prognostic role of the cyclin-dependent kinase inhibitor p27 in non-small cell lung cancer. Cancer Res, 57, 3381, 1997.PubMedGoogle Scholar
  37. 37.
    Porter, P.L., Malone, K.E., Heagerty, P.J., Alexander, G.M., Gatti, L.A., Firpo, E.J., Daling, J.R., and Roberts, J.M. Expression of cell-cycle regulators p27K1p1 and cyclin E, alone and in combination, correlate with survival in young breast cancer patients. Nature Medicine, 3, 222, 1997.PubMedCrossRefGoogle Scholar
  38. 38.
    Tan, R, Cady, B., Wanner, M., Worland, R, Cukor, B., Magi-Galluzzi, C., Lavin, P., Draetta, G., Pagano, M., and Loda, M. The cell cycle inhibitor p27 is an independent prognostic marker in small (Tla,b) invasive breast carcinomas. Cancer Res., 57, 1259, 1997.PubMedGoogle Scholar
  39. 39.
    Bates, S. and Peters G. Cyclin Dl as a cellular protooncogene. Sem. Cancer Biol., 6, 73–82, 1995.Google Scholar
  40. 40.
    Schimdt, E.E., Ichimura, K., Reifenberger, G., and Collins, V.P CDKN2 (p16:MTS1) gene deletion or CDK4 amplification occurs in the majority of glioblastoma. Cancer Res., 54, 6321–6324, 1994.Google Scholar
  41. 41.
    Miller, A.B. Diet and Cancer: a review. Rev. Oncol., 3, 87–95, 1990.Google Scholar
  42. 42.
    Adlercreutz, H. Western diet and western diseases: some hormonal and biochemical mechanisms and association. Scand. J. Clin. Lab. Invest., 50, 3–23, 1990.CrossRefGoogle Scholar
  43. 43.
    Rose, D.P., Boyar, A.P., and Wynder, E.I. International comparison of mortality rates for cancer of the breast, ovary, prostate, colon, and per capita fat consumption. Cancer (Phila), 58, 2363–2371, 1986.CrossRefGoogle Scholar
  44. 44.
    Kolonel, L.N. Variability in diet and its relation to risk in ethnic and migrant groups. Basic Life Sci., 43, 129–135, 1988.PubMedGoogle Scholar
  45. 45.
    Fotsis, T., Pepper, M., Adlercreutz, H., Fleischmann, G., Hase, T., Montesano, R., and Schweigerer, L. Genistein, a dietary-derived inhibitor of in vivo angiogenesis. Proc. Natl. Acad. Sci. USA, 90, 2690–2694, 1993.PubMedCrossRefGoogle Scholar
  46. 46.
    Adlercreutz, H., Honjo, H., Higashi, A., Fotsis, T., Hamalainen, E., Hasegawa, T., and Okada, H. Urinary excretion of lignans and isoflavonoi phytoestrogens in Japanese men and women consuming traditional Japanese diet. Am. J. Clin. Nutr. 53, 1093–1110, 1993.Google Scholar
  47. 47.
    Chinery, R., Brockman, J.A., Peeler, M.O., Shyr, Y., Beuchamp, R.D., and Offey, R.J. Antioxidants enhance the cytotoxicity of chemotherapeutic agents in colorectal cancer: A p53-independent induction of p21WAFC via C/EBPß. Nature Medicine, 3, 1233–1241, 1997.PubMedCrossRefGoogle Scholar
  48. 48.
    Shao, Z.M., Alpaugh, M.L., Fontana, J.A., and Barsky, S.H. Genistein inhibits proliferation in estrogen receptor-positive and negative human breast carcinoma cell lines characterized by p21WAF1/CIP1 induction, G2/M arrest and apoptosis. J. Cell Biochem., 69, 44–54, 1998.PubMedCrossRefGoogle Scholar
  49. 49.
    Lian, E, Bhuiyan, M., Li, W.Y., Wall, N., Kraut, M., and Sarkar, F.H. Genistein-induced G2-M arrest, p21WAF1 upregulation, and apoptosis in a non-small-cell lung cancer cell line. Nutr. Cancer, 31, 184–191, 1998.PubMedCrossRefGoogle Scholar
  50. 50.
    Markovits, J., Linnassier, C., Fosse, P., Couprie, J., Pierre, J., Jacquemin-Sablon, A., Saucier, J.M., Lepecq, J.B., and Larsen, A.K. Inhibitory effects of the tyrosine kinase inhibitor genistein on mammalian topoisomerase II. Cancer Res., 49, 5111–5119, 1989.PubMedGoogle Scholar
  51. 51.
    Yuan, Z., Kharbanda, S., and Kufe, D. 141-arabinofuranosylcytosine activates tyrosine phosphorylation of p34cdc2 and its association with the Src-like p56/p53lyn kinase in human myeloid leukemia cells. Biochemistry, 34, 1058–1063, 1995.PubMedCrossRefGoogle Scholar
  52. 52.
    Kawada, N., Seki, S., Inoue, M., and Kuroki, T. Effect of antioxidants, resveratrol, quercetin, and Nacetylcysteine, on the functions of cultured rat hepatic stellate cells and Kupffer cells. Hepatology, 27, 1265–1274, 1998.PubMedCrossRefGoogle Scholar
  53. 53.
    Carlson, B.A., Bubay, M.M., Sausville, E.A., Brizuela, L., and Worland, P.J. Flavopiridol induces G1 arrest with inhibition of cyclin-dependet kinase (CDK) 2 and CDK4 in human breast carcinoma cells. Cancer Res, 56, 2473–2478, 1996.Google Scholar
  54. 54.
    Della Ragione, F., Cucciolla, V., Borriello, A., Della Pietra, V., Racioppi, L., Soldati, G., Manna, C., Galletti R, and Zappia, V. Resveratrol arrests the cell division cycle at S/G2 phase transition. Biochem Biophys Res Commun., 250, 53–58, 1998.PubMedCrossRefGoogle Scholar
  55. 55.
    Slavoshian, S., Blottiere, H.M., Cherbut, C., and Galmiche, J.P. Butyrate stimulates cyclin D and p21 and inhibits cyclin-dependent kinase 2 expression in HT-29 colonic epithelial cells. Biochem. Biphys. Res Commun., 232, 169–172, 1997.Google Scholar
  56. 56.
    Nakano, K., Mizuno, T., Sowa, Y., Orita, T., Yoshino, T., Okuyama, Y., Fujita, T., Ohtani-Fujita, N., Matsukawa, Y., Tokino, T., Yamagishi, H., Oka, T., Nomura, H., and Sakai, T. Butyrate activates the WAF1/CIP1 gene promoter through spl sites in a p53-negtive colon cancercell line. J. Biol. Chem., 272, 22199–22206, 1997.PubMedCrossRefGoogle Scholar
  57. 57.
    Candido, E.P.M., Reeves, R., and Davie, J.R. Sodium butyrate inhibits histone deacetylation in cultured cells. Cell, 14, 105–113, 1978.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Fulvio Della Ragione
    • 1
  • Adriana Borriello
    • 1
  • Valentina Della Pietra
    • 1
  • Valeria Cucciolla
    • 1
  • Adriana Oliva
    • 1
  • Alfonso Barbarisi
    • 2
  • Achille Iolascon
    • 1
  • Vincenzo Zappia
    • 1
  1. 1.Institute of Biochemistry of Macromolecules Medical SchoolSecond University of NaplesNaplesItaly
  2. 2.Institute of “Clinica Chirurgica Generale e Terapia Chirurgica” General Surgery and Surgical Therapy Medical SchoolSecond University of NaplesItaly

Personalised recommendations