Nutritional Factors in Human Cancers

  • Edward Giovannucci
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 472)


A variety of external factors interacting with genetic susceptibility influence the carcinogenesis process. External factors including oxidative compounds, electrophilic agents, and chronic infections may enhance genetic damage. In addition, various hormonal factors which influence growth and differentiation are critically important in the carcinogenic process. Diet and nutrition can influence these processes directly in the gastrointestinal tract by providing bioactive compounds to specific tissues via the circulatory system, or by modulating hormone levels. Differences in certain dietary patterns among populations explain a substantial proportion of cancers of the colon, prostate and breast. These malignancies are largely influenced by a combination of factors related to diet and nutrition. Their causes are multifactorial and complex, but a major influence is the widespread availability of energy-dense, highly processed and refined foods that are also deplete in fiber. These dietary patterns in combination with physical inactivity contribute to obesity and metabolic consequences such as increased levels of IGF-1, insulin, estrogen, and possibly testosterone. These hormones tend to promote cellular growth. For prostate cancer, epidemiologic studies consistently show a positive association with high consumption of milk, dairy products, and meats. These dietary factors tend to decrease 1,25(OH)2 vitamin D, a cell differentiator, and low levels of this hormone may enhance prostate carcinogenesis. While the nutritional modulation of growth-enhancing and differentiating hormones is likely to contribute to the high prevalence of breast, colorectal, prostate, and several other cancers in the Western world, these cancers are relatively rare in less economically developed countries, where malignancies of the upper gastrointestinal tract are quite common The major causes of upper gastrointestinal tract cancers are likely related to various food practices or preservation methods other than refrigeration, which increase mucosal exposure to irritants or carcinogens.


Prostate Cancer Colorectal Cancer Colon Cancer Dietary Pattern Natl Cancer Inst 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Armstrong B. and Doll R. Environmental factors and cancer incidence and mortality in different countries, with special reference to dietary practices. Int J Cancer. 1975; 15: 617–631.PubMedCrossRefGoogle Scholar
  2. 2.
    Staszewski J. and Haenszel W. Cancer mortality among the Polish-born in the United States. J Natl Cancer Inst. 1965; 35: 291–297.PubMedGoogle Scholar
  3. 3.
    Adelstein A.M., Staszewski J., and Muir C.S. Cancer mortality in 1970–1972 among Polish-born migrants to England and Wales. Br J Cancer. 1979; 40: 464–475.PubMedCrossRefGoogle Scholar
  4. 4.
    McMichael A.J. and Giles G.G. Cancer in migrants to Australia: extending the descriptive epidemiological data. Cancer Res. 1988; 48: 751–756.PubMedGoogle Scholar
  5. 5.
    Shimizu H., Ross R.K., Bernstein L., Yatani R., Henderson B.E., and Mack T.M. Cancers of the prostate and breast among Japanese and white immigrants in Los Angeles County. Br J Cancer. 1991; 63: 963–966.PubMedCrossRefGoogle Scholar
  6. 6.
    Ziegler R.G., Hoover R.N., Pike M.C., Hildesheim A., Nomura A.M.Y., West D.W., Wu-Williams A.H., Kolonel L.N., Horn-Ross P.L., Rosenthal J.F., and Hyer M.B. Migration patterns and breast cancer risk in Asian-American women. J Natl Cancer Inst. 1993; 85: 1819–1827.PubMedCrossRefGoogle Scholar
  7. 7.
    Haenszel W. and Kurihara M. Studies of Japanese migrants. I. Mortality from cancer and other diseases among Japanese in the United States. J Natl Cancer Inst. 1968; 40: 43–68.PubMedGoogle Scholar
  8. 8.
    Ruggeri B.A., Klurfeld D.M., Kritchevsky D., and Furlanetto R.W. Caloric restriction and 7,12dimethylbenz(a)anthracene-induced mammary tumor growth in rats: alterations in circulating insulin, insulin-like growth factors I and II, and epidermal growth factor. Cancer Res. 1989; 49: 4130–4134.PubMedGoogle Scholar
  9. 9.
    Klurfeld D.M., Lloyd L.M., Wélch C.B., Davis M.J., Tulp O.L., and Kritchevsky D. Reduction of enhanced mammary carcinogenesis in LA/N-cp (corpulent) rats by energy restriction. Proc Soc Exp Biol Med. 1991; 196: 381–384.PubMedGoogle Scholar
  10. 10.
    Chasan-Taber S., Rimm E.B., Stampfer M.J., Spiegelman D., Colditz G.A., Giovannucci E., Ascherio A., and Willett W.C. Reproducibility and validity of a self-administered physical activity questionnaire for male health professionals. Epidemiology. 1996; 7: 81–86.PubMedCrossRefGoogle Scholar
  11. 11.
    Giovannucci E., Ascherio A., Rimm E B., Colditz G.A., Stampfer M.J., and Willett W.C. Physical activity, obesity, and risk for colon cancer and adenoma in men. Ann Intern Med. 1995; 122: 327–334.PubMedGoogle Scholar
  12. 12.
    Albanes D., Jones D.Y., Schatzkin A., Micozzi M.S., and Taylor P.R. Adult stature and risk of cancer. Cancer Res. 1988; 48: 1658–1662.PubMedGoogle Scholar
  13. 13.
    Hebert P.R., Ajani U., Cook N.R., Lee I.-M., Chan K.S., and Hennekens C.H. Adult height and incidence of cancer in male physicians (United States). Cancer Causes Control. 1997; 8: 591–597.PubMedCrossRefGoogle Scholar
  14. 14.
    Huang Z., Hankinson S.E., Colditz G.A., Stampfer M.J., Hunter D.J., Manson J.E., Hennekens C.H., Rosner B., Speizer F.E., and Willett W.C. Dual effects of weight and weight gain on breast cancer risk. J Am Med Assoc. 1997; 278: 1407–1411.CrossRefGoogle Scholar
  15. 15.
    Giovannucci E., Rimm E.B., Stampfer M.J., Colditz G.A., and Willett W.C. Height, body weight, and risk of prostate cancer. Cancer Epidemiol Biomarkers Prey. 1997; 6: 557–563.Google Scholar
  16. 16.
    Colditz G., Cannuscio C., and Frazier A. Physical activity and reduced risk of colon cancer: implications for prevention. Cancer Causes Control. 1997; 8: 649–667.PubMedCrossRefGoogle Scholar
  17. 17.
    Bernstein L., Henderson B.E., Hanisch R., Sullivan-Halley J., and Ross R.K. Physical exercise and reduced risk of breast cancer in young women. J Natl Cancer Inst. 1994; 86: 1403–1408.PubMedCrossRefGoogle Scholar
  18. 18.
    Lee I.M., Paffenbarger R.S., Jr., and Hsieh C.C. Physical activity and risk of prostatic cancer among college alumni. Am J Epidemiol. 1992; 135: 169–175.PubMedGoogle Scholar
  19. 19.
    Chan J.M., Stampfer M.J., Giovannucci E., Gann P.H., Ma J., Wilkinson P., Hennekens C.H., and Pollak M. Plasma insulin-like growth factor-I and prostate cancer risk: a prospective study. Science. 1998; 279: 563–566.PubMedCrossRefGoogle Scholar
  20. 20.
    Hankinson S.E., Willett W.C., Colditz G.A., Hunter D.J., Michaud D.S., Deroo B., Rosner B., Speizer F.E., and Pollak M. Circulating concentrations of insulin-like growth factor-I and risk of breast cancer. Lancet. 1998; 351: 1393–1396.PubMedCrossRefGoogle Scholar
  21. 21.
    Hankinson S.E., Willett W.C., Manson J.E., Colditz G.A., Hunter D.J., Spiegelman D., Barbieri R.L., and Speizer F.E. Plasma sex steriod hormone levels of breast cancer in postmenopausal women. J Natl Cancer Inst. 1998 (in press).Google Scholar
  22. 22.
    Gann P.H., Hennekens C.H., Ma J., Longcope C., and Stampfer M.J. A prospective study of sex hormone levels and risk of prostate cancer. J Natl Cancer Inst. 1996; 88: 1118–1126.PubMedCrossRefGoogle Scholar
  23. 23.
    Reaven G.M. Do high carbohydrate diets prevent the development or attenuate the manifestations (or both) of syndrome X? A viewpoint strongly against. Current Opinion In Lipidology. 1997; 8: 23–27.PubMedCrossRefGoogle Scholar
  24. 24.
    Giovannucci E. Insulin and colon cancer. Cancer Causes Control. 1995; 6: 164–179.PubMedCrossRefGoogle Scholar
  25. 25.
    Isley W.L., Underwood L.E., and Clemmons D.R. Dietary components that regulate serum somatomedin-C concentrations in humans. J Clin Invest. 1983; 71: 175–182.PubMedCrossRefGoogle Scholar
  26. 26.
    Clemmons D.R., Underwood L.E., Dickerson R.N., Brown R.O., Hak L.J., MacPhee R.D., and Heizer W.D. Use of plasma somatomedin-C/insulin-like growth factor I measurements to monitor the response to nutritional repletion in malnourished patients. Am J Clin Nutr. 1985; 41: 191–198.PubMedGoogle Scholar
  27. 27.
    Unterman T.G., Vazquez R.M., Slas A.J., Martyn P.A., and Phillips L.S. Nutrition and somatomedin. XIII. Usefulness of somatomedin-C in nutritional assessment. Am J Med. 1985; 78: 228–234.PubMedCrossRefGoogle Scholar
  28. 28.
    Rose D.P. and Connolly J.M. Dietary fat, fatty acids, and prostate cancer. Lipids. 1992; 27: 798–803.PubMedCrossRefGoogle Scholar
  29. 29.
    Giovannucci E. How is individual risk for prostate cancer assessed? Hematology/Oncology Clinics of North America. 1996; 10: 537–548.PubMedCrossRefGoogle Scholar
  30. 30.
    Rose D.P., Boyar A.P., and Wynder E.L. International comparisons of mortality rates for cancer of the breast, ovary, prostate, and colon, and per capita food consumption. Cancer. 1986; 58: 2263–2271.CrossRefGoogle Scholar
  31. 31.
    Jain M., Cook G.M., Davis F.G., Grace M.G., Howe G.R., and Miller A.B. A case-control study of diet and colo-rectal cancer. Int J Cancer. 1980; 26: 757–768.PubMedCrossRefGoogle Scholar
  32. 32.
    Potter J.D. and McMichael A.J. Diet and cancer of the colon and rectum: a case-control study. J Nat! Cancer Inst. 1986; 76: 557–569.PubMedGoogle Scholar
  33. 33.
    Lyon J.L., Mahoney A.W., West D.W., Gardner J.W., Smith K.R., Sorenson A.W., and Stanish W. Energy intake: its relationship to colon cancer risk. J Natl Cancer Inst. 1987; 78: 853–861.PubMedGoogle Scholar
  34. 34.
    Graham S., Marshall J., Haughey B., Mittelman A., Swanson M., Zielezny M., Byers T., Wilkinson G., and West D. Dietary epidemiology of cancer of the colon in western New York. Am J Epidemiol. 1988; 128: 490–503.PubMedGoogle Scholar
  35. 35.
    Bristol J.B., Emmett P.M., Heaton K.W., and Williamson R.C. Sugar, fat, and the risk of colorectal cancer. Br Med J (Clin Res Ed). 1985; 291: 1467–1470.CrossRefGoogle Scholar
  36. 36.
    Kune G.A. and Kune S. The nutritional causes of colorectal cancer: an introduction to the Melbourne study. Nutr Cancer. 1987; 9: 1–4.PubMedCrossRefGoogle Scholar
  37. 37.
    West D.W., Slattery M.L., Robison L.M., Schuman K L, Ford M.H., Mahoney A.W., Lyon J.L., and Sorensen A.W. Dietary intake and colon cancer: sex-and anatomic site-specific associations. Am J Epidemiol. 1989; 130: 883–894.PubMedGoogle Scholar
  38. 38.
    Peters R.K., Pike M.C., Garabrandt D., and Mack T.M. Diet and colon cancer in Los Angeles County, California. Cancer Causes Control. 1992; 3: 457–473.PubMedCrossRefGoogle Scholar
  39. 39.
    Gerhardsson de Verdier M., Hagman U., Peters R.K., Steineck G., and Overik E. Meat, cooking methods, and colorectal cancer: A case-referent study in Stockholm. Int J Cancer. 1991; 49: 520–525.PubMedCrossRefGoogle Scholar
  40. 40.
    Manousos O., Day N.E., Trichopoulos D., Gerovassilis E, Tzanou A., and Polychronopoulou A. Diet and colorectal cancer: a case-control study in Greece. Int J Cancer. 1983; 32: 1–5.PubMedCrossRefGoogle Scholar
  41. 41.
    La Vecchia C., Negri E., Decarli A., D’Avanzo B., Gallotti L., Gentile A., and Franceschi S. A case-control study of diet and colo-rectal cancer in northern Italy. Int J Cancer. 1988; 41: 492–498.PubMedCrossRefGoogle Scholar
  42. 42.
    Miller A.B., Howe G.R., Jain M., Craib K.J.P., and Harrison L. Food items and food groups as risk factors in a case-control study of diet and colo-rectal cancer. Int J Cancer. 1983; 32: 155–161.PubMedCrossRefGoogle Scholar
  43. 43.
    Young T.B. and Wolf D.A. Case-control study of proximal and distal colon cancer and diet in Wisconsin. Int J Cancer. 1988; 42: 167–175.PubMedCrossRefGoogle Scholar
  44. 44.
    Benito E., Obrador A., Stiggelbout A., Bosch F.X., Mulet M., Munoz N., and Kaldor J. A population-based case-control study of colorectal cancer in Majorca. I. Dietary factors. Int J Cancer. 1990; 45: 69–76.PubMedCrossRefGoogle Scholar
  45. 45.
    Lee H.P., Gourley L., Duffy S.W., Esteve J., Lee J., and Day N.E. Colorectal cancer and diet in an Asian population-A case-control study among Singapore Chinese. Int J Cancer. 1989; 43: 1007–1016.PubMedCrossRefGoogle Scholar
  46. 46.
    Willett W.C., Stampfer M.J., Colditz G.A., Rosner B.A., and Speizer F.E. Relation of meat, fat, and fiber intake to the risk of colon cancer in a prospective study among women. N Engl J Med. 1990; 323: 1664–1672.PubMedCrossRefGoogle Scholar
  47. 47.
    Goldbohm R.A., van den Brandt P.A., van’t Veer P., Brants H.A.M., Dorant E., Sturmans E, and Hermus R.J.J. A prospective cohort study on the relation between meat consumption and the risk of colon cancer. Cancer Res. 1994; 54: 718–723.PubMedGoogle Scholar
  48. 48.
    Bostick R.M., Potter J.D., Kushi L.H., Sellers T.A., Steinmetz K.A., McKenzie D.R., Gapstur S.M., and Folsom A.R. Sugar, meat, and fat intake, and non-dietary risk factors for colon cancer incidence in Iowa women (United States). Cancer Causes Control. 1994; 5: 38–52.PubMedCrossRefGoogle Scholar
  49. 49.
    Giovannucci E., Rimm E.B., Stampfer M.J., Colditz G.A., Ascherio A., and Willett W.C. Intake of fat, meat, and fiber in relation to risk of colon cancer in men. Cancer Res. 1994; 54: 2390–2397.PubMedGoogle Scholar
  50. 50.
    Burkitt D.P. Epidemiology of cancer of the colon and rectum. Cancer. 1971; 28: 3–13.PubMedCrossRefGoogle Scholar
  51. 51.
    Velazquez O.C. and Rombeau J.L. Butyrate. Potential role in colon cancer prevention and treatment. Adv Exp Med Biol. 1997; 427: 169–181.PubMedCrossRefGoogle Scholar
  52. 52.
    Corpet D., Jacquinet C., Peiffer G., and Taché S. Insulin injections promote the growth of aberrant crypt foci in the colon of rats. Nutr Cancer. 1997; 27: 316–320.PubMedCrossRefGoogle Scholar
  53. 53.
    Tran T.T., Medline A., and Bruce R. Insulin promotion of colon tumors in rats. Cancer Epidemiol Biomarkers Prey. 1996; 5: 1013–1015.Google Scholar
  54. 54.
    Wolever T.M.S., Jenkins D J., Jenkins A.L., and Josse R.G. The glycemic index: methodology and clinical implications. Am J Clin Nutr. 1991; 54: 846–854.PubMedGoogle Scholar
  55. 55.
    Wolever T. The glycemic index, in Aspects of Some Vitamins, Minerals, and Enzymes in Health and Disease, G Bourne, Ed. 1990, Karger: Basel, Switzerland. pp. 120–185.Google Scholar
  56. 56.
    Wickramasinghe S. and Fida S. Bone marrow cells from vitamin B12- and folate-deficient patients misincorporate uracil into DNA. Blood. 1994; 83: 1656–1661.PubMedGoogle Scholar
  57. 57.
    Weinberg G., Ullman B., and Martin D.W., Jr. Mutator phenotypes in mammalian cell mutants with distinct biochemical defects and abnormal deoxyribonucleoside triphosphate pools. Proc Natl Acad Sci USA. 1981; 78: 2447–2451.PubMedCrossRefGoogle Scholar
  58. 58.
    Meuth M. Role of deoxynucleoside triphosphate pools in the cytotoxic and mutagenic effects of DNA alkylating agents. Somatic Cell Genet. 1981; 7: 89–102.PubMedCrossRefGoogle Scholar
  59. 59.
    Sutherland G.R. The role of nucleotides in human fragile site expression. Mutat Res. 1988; 200: 207–213.PubMedCrossRefGoogle Scholar
  60. 60.
    Fenech M. and Rinaldi J. The relationship between micronuclei in human lymphocytes and plasma levels of vitamin C, vitamin E, vitamin B12 and folic acid. Carcinogenesis. 1994; 15: 1405–1411.PubMedCrossRefGoogle Scholar
  61. 61.
    Hunting D.J. and Dresler S.L. Dependence of u.v.-induced DNA excision repair on deoxyribonucleoside triphosphate concentrations in permeable human fibroblasts: a model for the inhibition of repair by hydroxyurea. Carcinogenesis (Lond). 1985; 6: 1525–1528.CrossRefGoogle Scholar
  62. 62.
    James S.J., Basnakian A.G., and Miller B.J. In vitro folate deficiency induces deoxynucleotide pool imbalance, apoptosis, and mutagenesis in Chinese hamster ovary cells. Cancer Res. 1994; 54: 5075–5080.PubMedGoogle Scholar
  63. 63.
    Blount B.C., Mack M.M., Wehr C.M., MacGregor J.T., Hiatt R.A., Wang G., Wickramasinghe S.N., Everson R.B., and Ames B.N. Folate deficiency causes uracil misincorporation into human DNA and chromosome breakage: implications for cancer and neuronal damage. Proc Natl Acad Sci USA. 1997; 94: 3290–3295.PubMedCrossRefGoogle Scholar
  64. 64.
    Holliday R. The inheritance of epigenetic defects. Science. 1987; 238: 163–170.PubMedCrossRefGoogle Scholar
  65. 65.
    Cravo M., Fidalgo P., Pereira A.D., Gouveia-Oliveira A., Chavas P., Selhub J., Mason J.B., Mira EC., and Leitao C.N. DNA methylation as an intermediate biomarker in colorectal cancer: modulation by folic acid supplementation. Eur J Cancer Prevention. 1994; 3: 473–479.CrossRefGoogle Scholar
  66. 66.
    Feinberg A.P. and Vogelstein B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature. 1983; 301: 89–92.PubMedCrossRefGoogle Scholar
  67. 67.
    Goelz S.E., Vogelstein B., Hamilton S.R., and Feinberg A.P. Hypomethylation of DNA from benign and malignant human colon neoplasms. Science. 1985; 228: 187–190.PubMedCrossRefGoogle Scholar
  68. 68.
    Feinberg A.P., Gehrke C.W., Kuo K.C., and Ehrlich M. Reduced genomic 5-methylcytosine content in human colonic neoplasia. Cancer Research. 1988; 48: 1159–1161.PubMedGoogle Scholar
  69. 69.
    Issa J.-P.J., Vertino P.M., Wu J., Sazawal S., Celano R, Nelkin B.D., Hamilton S.R., and Baylin S.B. Increased cytosine DNA-methyltransferase activity during colon cancer progression. J Natl Cancer Inst. 1993; 85: 1235–1240.PubMedCrossRefGoogle Scholar
  70. 70.
    Makos M., Nelkin B.D., Lerman M.I., Latif E, Zbar B., and Baylin S.B. Distinct hypermethylation patterns occur at altered chromosome loci in human lung and colon cancer. Proc Natl Acad Sci USA. 1992; 89: 1929–1933.PubMedCrossRefGoogle Scholar
  71. 71.
    Glynn S.A. and Albanes D. Folate and cancer: a review of the literature. Nutr Cancer. 1994; 22: 101–119.PubMedCrossRefGoogle Scholar
  72. 72.
    Benito E., Stiggelbout A., Bosch EX., Obrador A., Kaldor J., Mulet M., and Munoz N. Nutritional factors in colorectal cancer risk: a case-control study in Majorca. Int J Cancer. 1991; 49: 161–167.PubMedCrossRefGoogle Scholar
  73. 73.
    Meyer E. and White E. Alcohol and nutrients in relation to colon cancer in middle-aged adults. Am J Epidemiol. 1993; 138: 225–236.PubMedGoogle Scholar
  74. 74.
    Ferraroni M., La Vecchia C., D’Avanzo B., Negri E., Franceschi S., and Decarli A. Selected micronutrient intake and the risk of colorectal cancer. British Journal of Cancer. 1994; 70: 1150–1155.PubMedCrossRefGoogle Scholar
  75. 75.
    Freudenheim J.L., Graham S., Marshall J.R., Haughey B.P., Cholewinski S., and Wilkinson G. Folate intake and carcinogenesis of the colon and rectum. Int J Epidemiol. 1991; 20: 368–374.PubMedCrossRefGoogle Scholar
  76. 76.
    Glynn S.A., Albanes D., Pietinen P., Brown C.C., Rautalahti M., Tangrea J.A., Gunter E.W., Barrett M.J.,Virtamo J., and Taylor P.R. Colorectal cancer and folate status:A nested case-control study among male smokers. Cancer Epidemiol Biomarkers Prevention. 1996; 5: 487–494.Google Scholar
  77. 77.
    Giovannucci E., Rimm E.B., Ascherio A., Stampfer M.J., Colditz G.A., and Willett W.C. Alcohol, lowmethionine-low-folate diets, and risk of colon cancer in men. J Natl Cancer Inst. 1995; 87: 265–273.PubMedCrossRefGoogle Scholar
  78. 78.
    Ma J., Stampfer M.J., Giovannucci E., Artigas C., Hunter D.J., Fuchs C., Willett W.C., Selhub J., Hennekens C.H., and Rozen R. Methylenetetrahydrofolate reductase polymorphism, dietary interactions, and risk of colorectal cancer. Cancer Res. 1997; 57: 1098–1102.PubMedGoogle Scholar
  79. 79.
    Giovannucci E., Stampfer M.J., Colditz G.A., Hunter D.J., Fuchs C., Rosner B.A., Speizer F.E., and Willett W.C. Multivitamin use, folate, and colon cancer in women in the Nurses’ Health Study. Ann Intern Med. 1998; 129: 517–524.PubMedGoogle Scholar
  80. 80.
    Bird C.L., Swendseid M.E., Witte J.S., Shikany J.M., Hunt I.F., Frankl H.D., Lee E.R., Longnecker M.P., and Haile R.W. Red cell and plasma folate, folate consumption, and the risk of colorectal adenomatous polyps. Cancer Epidemiol Biomarkers Prey. 1995; 4: 709–714.Google Scholar
  81. 81.
    Tseng M., Murray S.C., Kupper L.L., and Sandler R.S. Micronutrients and the risk of colorectal adenomas. Am J Epidemiol. 1996; 144: 1005–1014.PubMedCrossRefGoogle Scholar
  82. 82.
    Giovannucci E., Stampfer M.J., Colditz G.A., Rimm E.B., Trichopolous D., Rosner B.A., Speizer F.E., and Willett W.C. Folate, methionine, and alcohol intake and risk of colorectal adenoma. J Natl Cancer Inst. 1993; 85: 875–884.PubMedCrossRefGoogle Scholar
  83. 83.
    Benito E., Cabeza E., Moreno V., Obrador A., and Bosch F.X. Diet and colorectal adenomas: a case-control study in Majorca. Int J Cancer. 1993; 55: 213–219.PubMedCrossRefGoogle Scholar
  84. 84.
    Paspatis G.A., Kalafatis E., Oros L., Xourgias V., Koutsioumpa P., and Karamanolis D.G. Folate status and adenomatous colonic polyps. A colonoscopically controlled study. Dis Colon Rectum. 1995; 38: 64–68.PubMedCrossRefGoogle Scholar
  85. 85.
    Steinmetz K.A. and Potter J.D. Vegetables, fruit, and cancer. II. Mechanisms. Cancer Causes Control. 1991; 2: 427–442.PubMedCrossRefGoogle Scholar
  86. 86.
    Cerutti P.A. Prooxidant states and tumor promotion. Science. 1985; 227: 375–381.PubMedCrossRefGoogle Scholar
  87. 87.
    Wiseman H. and Halliwell B. Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem J. 1996; 313: 17–29.PubMedGoogle Scholar
  88. 88.
    Ames B., Shigenaga M., and Hagen T. Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci USA. 1993; 90: 7915–7922.PubMedCrossRefGoogle Scholar
  89. 89.
    Clark L.C., Combs G.F., Jr., Turnbull B.W., Slate E.H., Chalker D.K., Chow J., Davis L.S., Glover R.A., Graham G.F., Gross E.G., Krongrad A., Lesher J.L., Jr., Park H.K., Sanders B.B., Jr., Smith C.L., and Taylor J.R. Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin. A randomized controlled trial. Nutritional Prevention of Cancer Study Group. JAMA. 1996; 276: 1957–1963.PubMedCrossRefGoogle Scholar
  90. 90.
    The Alpha-Tocopherol Beta-Carotene Cancer Prevention Study Group. The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. N Engl J Med. 1994; 330: 1029–1035.Google Scholar
  91. 91.
    Wang H., Cao G., and Prior R. Total antioxidant capacity of fruits. J Agric Food Chem. 1996; 44: 701–705.CrossRefGoogle Scholar
  92. 92.
    Stahl W. and Sies H. Uptake of lycopene and its geometrical isomers is greater from heat-processed than from unprocessed tomato juice in humans. J Nutr. 1992; 122: 2161–2166.PubMedGoogle Scholar
  93. 93.
    Giovannucci E., Ascherio A., Rimm E.B., Stampfer M.J., Colditz G.A., and Willett W.C. Intake of carotenoids and retinol in relation to risk of prostate cancer. J Natl Cancer Inst. 1995; 87: 1767–1776.PubMedCrossRefGoogle Scholar
  94. 94.
    Hsing A.W., Comstock G.W., Abbey H., and Polk B.F. Serologic precursors of cancer. Retinol, carotenoids, and tocopherol and risk of prostate cancer. J Natl Cancer Inst. 1990; 82: 941–946.PubMedCrossRefGoogle Scholar
  95. 95.
    Parsonnet J. Bacterial infection as a cause of cancer. Environ Health Perspect. 1995;103(suppl 8):263–268.Google Scholar
  96. 96.
    World Health Organization. The World Health Report, 1997, World Health Organization, Geneva.Google Scholar
  97. 97.
    Zheng W, Blot W., Shu X., Diamond E., Gao Y., Ji B., and Fraumeni J., Jr. Risk factors for oral and pharyngeal cancer in Shanghai, with emphasis on diet. Cancer Epidemiol Biomarkers Prey. 1992; 1: 441–448.Google Scholar
  98. 98.
    Winn D.M., Ziegler R.G., Pickle L.W., Gridley G., Blot W.J., and Hoover R.N. Diet in the etiology of oral and pharyngeal cancer among women from the southern United States. Cancer Res. 1984; 44: 1216–1222.PubMedGoogle Scholar
  99. 99.
    Franco E., Kowalski L, Oliveira B., Curado M., Pereira R., Silva M., Fava A., and Torloni H. Risk factors for oral cancer in Brazil: a case-control study. Int J Cancer. 1989; 42: 992–1000.CrossRefGoogle Scholar
  100. 100.
    De Stefani E., Correa E, Oreggia E, Deneo-Pellegrini H., Fernandez G., Zavala D., Carzoglio J., Leiva J., Fontham E., and Rivero S. Black tobacco, wine and mate in oropharyngeal cancer. A case-control study from Uruguay. Rev Epidemiol Sante Publique. 1988; 36: 389–394.PubMedGoogle Scholar
  101. 101.
    Oreggia E, De Stefani E., Correa P., and Fierro L. Risk factors for cancer of the tongue in Uruguay. Cancer. 1991; 67: 180–183.PubMedCrossRefGoogle Scholar
  102. 102.
    Martinez I. Factors associated with cancer of the esophagus, mouth, and pharynx in Puerto Rico. J Natl Cancer Inst. 1969; 42: 1069–1094.PubMedGoogle Scholar
  103. 103.
    De Stefani E., Munoz N., Estéve J., Vasallo A., Victora C.G., and Teuchmann S. Mate drinking, alcohol, tobacco, diet, and esophageal cancer in Uruguay. Cancer Res. 1990; 50: 426–431.PubMedGoogle Scholar
  104. 104.
    Vassallo A., Correa P., De Stéfani E., Cendan M., Zavala D., Chen V., Carzoglio J., and DeneoPellegrini H. Esophageal cancer in Uruguay: a case-control study. J Natl Cancer Inst. 1985; 75: 1005–1009.PubMedGoogle Scholar
  105. 105.
    Victora C., Munoz N., Day N., Barcelos L., Peccin D., and Braga N. Hot beverages and oesophageal cancer in southern Brazil: a case-control study. Int J Cancer. 1987; 39: 710–716.PubMedCrossRefGoogle Scholar
  106. 106.
    Yioris N., Ivankovic S., and Lehnert T. Effect of thermal injury and oral administration of N-methylN’-nitro-N-nitrosoguanidine on the development of esophageal tumors in Wistar rats. Oncology. 1984; 41: 36–38.PubMedCrossRefGoogle Scholar
  107. 107.
    Lu S., Chui S., Yang W, Hu X., Guo L., and Li E. Relevance of N-nitrosamines to oesophageal cancer in China. IARC Sci Publ. 1991; 105: 11–17.PubMedGoogle Scholar
  108. 108.
    Sivam G., Lampe J., Ulness B., Swanzy S., and Potter J. Helicobacter pylori-in vitro susceptibility to garlic (Allium sativum) extract. Nutr Cancer. 1997; 27: 118–121.PubMedCrossRefGoogle Scholar
  109. 109.
    Dorant E., van den Brandt P., Goldbohm R., and Sturmans E Consumption of onions and a reduced risk of stomach carcinoma. Gastroenterology. 1996; 110: 12–20.PubMedCrossRefGoogle Scholar
  110. 110.
    Manabe S., Tohyama K., Wada O., and Aramaki T. Detection of a carcinogen, 2-amino-1-methyl-6phenylimidazo[4,5-b]pyridine (PhIP), in cigarette smoke condensate. Carcinogenesis. 1991; 12: 1945–1947.PubMedCrossRefGoogle Scholar
  111. 111.
    Felton J.S., Knize M.G., Shen N.H., Lewis P.R., Andresen B.D., Happe J., and Hatch F.T. The isolation and identification of a new mutagen from fried ground beef: 2-amino-1-methyl-6-phenylimidazo[4,5b]pyridine (PhIP). Carcinogenesis. 1986; 7: 1081–1086.PubMedCrossRefGoogle Scholar
  112. 112.
    Sugimura T. and Sato S. Mutagens-carcinogens in foods. Cancer Res. 1983; 43: 2415S - 2421S.PubMedGoogle Scholar
  113. 113.
    Weisburger J.H. and Jones R.C. Prevention of formation of important mutagens/carcinogens in the human food chain. Basic Life Sci. 1990; 52: 105–118.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Edward Giovannucci
    • 1
    • 2
  1. 1.Channing Laboratory, Department of Medicine BrighamWomen’s HospitalBostonUSA
  2. 2.Harvard Medical School Departments of Nutrition and EpidemiologyHarvard School of Public HealthBostonUSA

Personalised recommendations