DNA Repair Pathways and Cancer Prevention

  • Anthony E. Pegg
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 472)

Abstract

This article describes the five main classes of DNA repair processes that occur in humans with respect to their mechanism of action, major substrates, and role in protection against endogenous and environmental DNA damaging agents. The importance of all of these processes in protection from the initiation of neoplastic growth has been established either in studies of inheritable diseases affecting DNA repair or experiments with transgenic animals or both. The capacity of DNA repair pathways to deal with DNA damage is therefore a critical factor in the cellular response to environmental, and dietary carcinogens. DNA repair activity and factors affecting this activity either directly or indirectly must be taken into account in risk assessment.

Keywords

Nucleotide Excision Repair Base Excision Repair Nijmegen Breakage Syndrome Base Excision Repair Pathway Nucleotide Excision Repair Pathway 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sancar, A. DNA Excision Repair, Annu. Rev. Biochem. 65: 43–81, 1996.CrossRefGoogle Scholar
  2. 2.
    Wood, R.D. Nucleotide excision repair in mammalian cells, J. Biol. Chem. 272: 23465–23468, 1997.PubMedCrossRefGoogle Scholar
  3. 3.
    Cleaver, J.E. and States, J.C. The DNA-damage-recognition problem in human and other eukaryotic cells: the XPA damage binding protein, Biochem. J. 328:1–12, 1997.PubMedGoogle Scholar
  4. 4.
    Sugasawa, K., Ng, J.M.Y., Masutani, C., Iwai, S., van der Spek, P.J., Eker, A.P.M., Hanaoka, F, Bootsma, D., and Hoeijmakers, J.H.J. Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair, Molecular Cell. 2: 223–232, 1998.PubMedCrossRefGoogle Scholar
  5. 5.
    Hanawalt, P.C. Genomic instability: environmental invasion and the enemies within, Mutation Res. 400: 117–125, 1998.PubMedCrossRefGoogle Scholar
  6. 6.
    Sancar, A. DNA repair in humans, Annu. Rev. Genetics. 29: 69–105, 1995.CrossRefGoogle Scholar
  7. 7.
    Kraemer, K.H. Sunlight and skin cancer: Another link revealed, Proc. Natl. Acad. Sci. USA. 94: 11–14, 1997.PubMedCrossRefGoogle Scholar
  8. 8.
    Ford, J.M. and Hanawalt, P.C. Role of DNA Excision Repair Gene Defects in the Otiology of Cancer. In: M.B. Kastan (ed.) Current Topics in Microbiology and Immunology, Vol. 221, pp. 47–70. Heidelberg: Springer-Verlag, 1997.Google Scholar
  9. 9.
    Friedberg, E.C., Meira, L.B., and Cheo, D.L. Database of mouse strains carrying targeted mutations in genes affecting cellular responses to DNA damage. Version 2, Mutation Res. 407: 217–226, 1998.Google Scholar
  10. 10.
    Krokan, H.E., Standahl, R., and Slupphaug, G. DNA glycosylases in the base excision repair of DNA, Biochem. J. 325: 1–16, 1997.PubMedGoogle Scholar
  11. 11.
    Wilson III, D.M. and Thompson, L.H. Life without DNA repair, Proc. Natl. Acad. Sci. USA. 94:12754–12757, 1997.CrossRefGoogle Scholar
  12. 12.
    Elder, R.H., Jansen, J.G., Weeks, R.J., Willington, M.A., Deans, B., Watson, A.J., Mynett, K.J., Bailey, J.A., and Margison, G.P. Alkylpurine-DNA-N-glycosylase knockout mice show increased susceptibility to induction of mutations by methyl methanesulfonate, Mol. Cell. Biol. 18: 5828–5837, 1998.PubMedGoogle Scholar
  13. 13.
    Allan, J.A., Engelward, B.P., Dreslin, A.J., Wyatt, M.D., Tomasz, M., and Samson, L.D. Mammalian 3methyladenine DNA glycosylase protects against the toxicity and clastogenicity of certain chemotherapeutic DNA cross-linking agents, Cancer Res. 58: 3965–3973, 1998.PubMedGoogle Scholar
  14. 14.
    Kaina, B. Critical steps in alkylation-induced aberration formation, Mutation Res. 404: 119–124, 1998.PubMedCrossRefGoogle Scholar
  15. 15.
    Glassner, B.J., Rasmussen, L.J., Najarian, M.T., Posnick, L.M., and Samson, L.D. Generation of a strong mutator phenotype in yeast by imbalanced base excision repair, Proc. Natl. Acad. Sci. USA. 95: 9997–10002, 1998.PubMedCrossRefGoogle Scholar
  16. 16.
    Cerda, S.R., Turk, P.W., Thor, A.D., and Weitzman, S.A. Altered expression of the DNA repair protein, N-methylpurine-DNA glycosylase (MPG) in breast cancer, FEBS Lett. 431: 12–18, 1998.PubMedCrossRefGoogle Scholar
  17. 17.
    Parikh, S.S., Mol, C.D., and Tainer, J.A. Base excision repair enzyme family portrait: integrating the structure and chemistry of an entire DNA repair pathway, Structure. 5: 1543–1550, 1997.PubMedCrossRefGoogle Scholar
  18. 18.
    Parikh, S.S., Mol, C.D., Slupphaug, G., Bharati, S., Krokan, H.E., and Tainer, J.A. Base excision repair initiation revealed by crystal structures and binding kinetics of human uracil-DNA glycosylase with DNA, Embo. J. 17: 5214–5226, 1998.PubMedCrossRefGoogle Scholar
  19. 19.
    Chevillard, S., Radicella, J.E, Levalois, C., Lebeau, J., Poupon, M.-F, Oudard, S., Dutrillaux, B., and Boiteux, S. Mutations in OGG1, a gene involved in the repair of oxidative DNA damage, are found in human lung and kidney tumors, Oncogene. 16: 3083–3086, 1998.PubMedCrossRefGoogle Scholar
  20. 20.
    Shinmura, K., Kohno, T., Kasai, H., Koda, K., Sugimura, H., and Yokota, J. Infrequent mutations of the hOGG1 gene that is involved in the excision of 8-hydroxyguanine in damaged DNA, in human gastric cancer, Jpn. J. Cancer Res. 89: 825–828, 1998.PubMedCrossRefGoogle Scholar
  21. 21.
    Modrich, P. and Lahue, R. Mismatch repair in replication fidelity, genetic recombination, and cancer biology, Ann. Rev. Biochem. 65: 101–133, 1996.PubMedCrossRefGoogle Scholar
  22. 22.
    Tindall, K.R., Glaab, W.E., Umar, A., Risinger, J.I., Koi, M., Barrett, J.C., and Kunkel, T.A. Complementation of mismatch repair gene defects by chromosome transfer, Mutation Res. 402: 15–22, 1998.PubMedCrossRefGoogle Scholar
  23. 23.
    Wilson III, D.M., Carney, J.P., Coleman, M.A., Adamson, A.W., Christensen, M., and Lamerdin, J.E. Hexl: a new human Rad2 nuclease family member with homology to yeast exonuclease 1, Nucleic Acid Res. 26: 3762–3768, 1998.PubMedCrossRefGoogle Scholar
  24. 24.
    Davis, T.W., Wilson-Van Patten, C., Meyers, M., Kunugi, K.A., Cuthil, S., Reznikoff, C., Garces, C., Boland, C.R., Kinsella, T.J., Fishel, R., and Boothman, D.A. Defective expression of the DNA mismatch reapir protein, MLH1, alters G2-M cell cycle checkpoint arrest following ionizing radiation, Cancer Res. 58: 767–778, 1998.PubMedGoogle Scholar
  25. 25.
    Toft, N.J. and Arends, M.J. DNA Mismatch Repair and Colorectal Cancer, J. Patho1. 185: 123–129, 1998.CrossRefGoogle Scholar
  26. 26.
    Veigl, M.L., Kasturi, L., Olechnowicz, J., Ma, A., Lutterbaugh, J.D., Periyasamy, S., Modrich, P., and Markowitz, S.D. Biallelic inactivation of hMLH1 by epigenetic gene silencing, a novel mechanism causing human MSI cancers, Proc. Natl. Acad. Sci. USA. 95: 8698–8702, 1998.PubMedCrossRefGoogle Scholar
  27. 27.
    Prolla, T. DNA mismatch repair and cancer, Curr. Opinion in Cell Biol. 10: 311–316, 1998.CrossRefGoogle Scholar
  28. 28.
    Nicolaides, N.C., Littman, S.J.P.M., Kinzler, K.W., and Vogelstein, B. A naturally occurring hPMS2 mutation can confer a dominant negative mutator phenotype, Mol. Cell. Biol. /8: 1635–1641, 1998.Google Scholar
  29. 29.
    Marra, G., Iaccarino, I., Lettieri, T., Roscilli, G., Delmastro, P., and Jiricny, J. Mismatch repair deficiency associated with overexpression of the MSH3 gene, Proc. Natl. Acad. Sci. USA. 95: 8568–8573, 1998.Google Scholar
  30. 30.
    Liang, F., Han, M., Romanienko, P.J., and Jasin, M. Homology-directed repair is a major double-strand break repair pathway in mammalian cells, Proc. Natl. Acad. Sci. USA. 95: 5172–5177, 1998.PubMedCrossRefGoogle Scholar
  31. 31.
    Chu, G. Double strand break repair, J. Biol. Chem. 272: 24097–24100, 1997.PubMedCrossRefGoogle Scholar
  32. 32.
    Jeggo, P.A., Can, A.M., and Lehmann, A.R. Splitting the ATM: distinct repair and checkpoint defects in ataxia-telangiectasia, Trends in Genet. /4: 312–316, 1998.Google Scholar
  33. 33.
    Featherstone, C. and Jackson, S.P. DNA repair: The Nijmegen breakage syndrome protein, Current Biol. 8: R622 - R625, 1998.CrossRefGoogle Scholar
  34. 34.
    Carney, J.P., Maser, R.S., Olivares, H., Davis, E.M., Le Beau, M., Yates, J.R., III, and Petrini, J.H.J. The hMrell/hRad50 protein complex and Nijmegen breakage syndrome. Linkage of double-strand break repair to the cellular DNA damage response, Cell. 93: 477–486, 1998.PubMedCrossRefGoogle Scholar
  35. 35.
    Pegg, A.E., Dolan, M.E., and Moschel, R.C. Structure, function and inhibition of O6-alkylguanineDNA alkyltransferase, Progr. Nucleic Acid Res. Mol. Biol. 51: 167–223, 1995.CrossRefGoogle Scholar
  36. 36.
    Goodtzova, K., Kanugula, S., Edara, S., Pauly, G.T., Moschel, R.C., and Pegg, A.E. Repair of O6benzylguanine by the Escherichia coil Ada and Ogt and the human 06-alkylguanine-DNA alkyltransferase., J. Biol. Chem. 272: 8332–8339, 1997.PubMedCrossRefGoogle Scholar
  37. 37.
    Wang, L., Spratt, T.E., X.-L., L., Hecht, S.S., Pegg, A.E., and Peterson, L.A. Pyridyloxobutyl adduct, 06-[4-oxo-4-(3-pyridyl)butyl]guanine, is present in 4-(acetoxymethylnitrosamino-1-(3-pyridyl)-1butanone-treated DNA and is a substrate for 06-alkylguanine-DNA alkyltransferase., Chem. Res. Toxicol. 10: 562–567, 1997.PubMedCrossRefGoogle Scholar
  38. 38.
    Vora, R., Pegg, A.E., and Ealick, S.E. A new model for how 06-methylguanine-DNA methyltransferase binds DNA, Proteins. 32: 3–6, 1998.PubMedCrossRefGoogle Scholar
  39. 39.
    Boldogh, I. Ramana, C.V., Chen, Z., Biswas, T., Hazra, T.K., Grösch, S., Grombacher, T., Mitra, S., and Kaina, B. Regulation of expression of the DNA repair gene 06-methylguanine-DNA methyltransferase via protein kinase C-mediated signaling, Cancer Res. 58:3950–3956, 1998.Google Scholar
  40. 40.
    Edara, S., Kanugula, S., and Pegg, A.E. Expression of the inactive C145A mutant human O6alkylguanine-DNA alkyltransferase in E. coli increases cell killing and mutations by N-methyl-N’nitro-N-nitrosoguanidine., Carcinogenesis in press, 1998.Google Scholar
  41. 41.
    Qian, X.C. and Brent, T.P. Methylation hot spots in the 5’ flanking region denote silencing of the Q6methylguanine-DNA methyltransferase gene, Cancer Res. 57: 3672–3677, 1997.PubMedGoogle Scholar
  42. 42.
    Gerson, S.L., Zaidi, N.H., Dumenco, L.L., Allay, E., Fan, C.Y., Liu, L., and O’Connor, P.J. Alkyltransferase transgenic mice: probes of chemical carcinogenesis, Mutation Res. 307: 541–555, 1994.PubMedCrossRefGoogle Scholar
  43. 43.
    Kaina, B., Fritz, G., Ochs, K., Haas, S., Grombacher, T., Dosch, J., Christmann, M., Lund, P, Gregel, C.M., and Becker, K. Transgenic systems in studies on genotoxicity of alkylating agents: critical lesions, thresholds, and defense mechanisms, Mutation Res. 405: 179–191, 1998.PubMedCrossRefGoogle Scholar
  44. 44.
    Iwakuma, T., Sakumi, K., Nakatsuru, Y., Kawate, H., Igarashi, H., Shiraishi, A., Tsuzuki, T., Ishikawa, T, and Sekiguchi, M. High incidence of nitrosamine-induced tumorigenesis in mice lacking DNA repair methyltransferase, Carcinogenesis. /8: 1631–1635, 1997.Google Scholar
  45. 45.
    Kawate, H., Sakumi, K., Tsuzuki, T, Nakatsuru, Y., Ishikawa, T., Takahashi, S., Takano, H., Noda, T., and Sekiguchi, M. Separation of killing and tumorigenic effects of an alkylating agent in mice defective in two of the DNA repair genes, Proc. Natl. Acad. Sci. USA. 95: 5116–5120, 1998.PubMedCrossRefGoogle Scholar
  46. 46.
    Pegg, A.E. Mammalian 06-alkylguanine-DNA alkyltransferase: regulation and importance in response to alkylating carcinogenesis and therapeutic agents, Cancer Res. 50: 6119–6129, 1990.PubMedGoogle Scholar
  47. 47.
    Kyrtopoulos, S.A. DNA adducts in humans after exposure to methylating agents, Mutation Res. 405: 135–143, 1998.PubMedCrossRefGoogle Scholar
  48. 48.
    Oh, H.-K., Teo, A.K.-C., Ali, R.B., Lim, A., Ayi, T-C., Yarosh, D.B., and Li, B.F.-L. Conformational change in human DNA repair enzyme 06-methylguanine-DNA methyltransferase upon alkylation of its active site by SN1 (indirect-acting) and SN2 (direct acting) alkylating agents: breaking a “salt-link”?, Biochemistry. 35: 12259–12266, 1996.PubMedCrossRefGoogle Scholar
  49. 49.
    Kahan, P. and Hampson, R. Genomic instability and tolerance to alkylating agents, Cancer Surveys. 28: 69–85, 1996.Google Scholar
  50. 50.
    Connor, E, Bertwistle, D., Mee, P.J., Ross, G.M., Swift, S., Grigorieva, E., Tybulewicz, V.L.J., and Ashworth, A. Tumorigenesis and a DNA repair defect in mice with a truncating Brca2 mutation, Nature Genetics. 17: 423–430, 1997.PubMedCrossRefGoogle Scholar
  51. 51.
    Patel, K.J., Yu, V.P.C.C., Lee, H., Corcoran, A., Thistlewaite, F.C., Evans, M.J., and Colledge, W.H. Involvement of Brca2 in DNA repair, Mol. Cell. /: 347–357, 1998.Google Scholar
  52. 52.
    Gowen, L.C., Avrutskaya, A.V., Latour, A.M., Koller, B.H., and Leadon, S.A. BRCA1 required for transcription-coupled repair of oxidative DNA damage, Science. 281: 1009–1012, 1998.PubMedCrossRefGoogle Scholar
  53. 53.
    Parshad, R., Bohr, V.A., Cowans, K.H., Zujewski, J.A., and Sanford, K.K. Deficient DNA repair capacity, a predisposing factor in breast cancer, Br. J. Cancer. 74: 1–5, 1996.PubMedCrossRefGoogle Scholar
  54. 54.
    Jyothish, B., Ankathil, R., Chandini, R., Vinodkumar, B., Nayar, G.S., Roy, D.D., Madhavan, J., and Nair, M.K. DNA repair proficiency: a potential marker for identification of high risk members in breast cancer families, Cancer Lett. 124:9–13, 1998.PubMedCrossRefGoogle Scholar
  55. 55.
    Jeggo, P.A. DNA Repair: PARP—another guardian angel?, Current Biol. 8: R49 - R51, 1998.CrossRefGoogle Scholar
  56. 56.
    Le Rhun, Y., Kirkland, J.B., and Shah, G.M. Cellular responses to DNA damage in the absence of poly(ADP-ribose) polymerase, Biochem. Biophys. Res Comm. 245: 1–10, 1998.PubMedCrossRefGoogle Scholar
  57. 57.
    Cristovao, L., Lechner, M.C., Leitäo, C.N., Mira, F.C., and Rueff, J. Absence of stimulation of poly(ADP-ribose) polymerase activity in patients predisposed to colon cancer, Br. J. Cancer. 77:1628–1632, 1998.PubMedCrossRefGoogle Scholar
  58. 58.
    Ellis, N.A., Groden, J., Ye, T.-Z., Straughen, J., Lennon, D.J., Ciocci, S., Proytcheva, M., and German, J. The Bloom’s syndrome gene product is homologous to RecQ helicases, Cell. 83: 655–666, 1995.Google Scholar
  59. 59.
    Buchwald, M. and Moustacchi, E. Is Fanconi anemia caused by a defect in the processing of DNA damage?, Mutation Res. 408: 75–90, 1998.PubMedCrossRefGoogle Scholar
  60. 60.
    Gottleib, T.M. and Oren, M. p53 in growth control and neoplasia, Biochim. Biophys. Acta. 1996: 77–102, 1996.Google Scholar
  61. 61.
    Wang, X.W. and Harris, C.C. TP53 tumour suppressor gene: clues to molecular carcinogenesis and cancer therapy, Cancer Surveys. 28: 169–196, 1996.PubMedGoogle Scholar
  62. 62.
    Abrahams, P.J., Houweling, A., Cornelissen-Steijger, P.D.M., Jaspers, N.G.J., Darroudi, E, Meijers, GM., Mullenders, L.H.E, Filon, R., Arwert, E, Pinedo, H.M., Natarajan, A.P.T., Terleth, C., Van Zeeland, A.A., and van der Eb, A.J. Impaired DNA repair capacity in skin fibroblasts from various hereditary cancer-prone syndromes, Mutation Res. 407:189–201, 1998.Google Scholar
  63. 63.
    Wei, Q. and Spitz, M.R. The role of DNA repair capacity in susceptibility to lung cancer: a review, Cancer and Metastasis Reviews. 16: 295–307, 1997.PubMedCrossRefGoogle Scholar
  64. 64.
    Cheng, L., Eicher, S.A., Guo, Z., Hong, W.K., Spitz, M.R., and Wei, Q. Reduced DNA repair capacity in head and neck cancer patients, Cancer Epidemiology, Biomarkers and Prevention. 7: 465–468, 1998.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Anthony E. Pegg
    • 1
  1. 1.Department of Cellular and Molecular PhysiologyPennsylvania State University College of Medicine The Milton S. Hershey Medical CenterHersheyUSA

Personalised recommendations