Skip to main content

Significance of Genetic Polymorphisms in Cancer Susceptibility

  • Chapter
Advances in Nutrition and Cancer 2

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 472))

Abstract

The variability of biotransformation enzyme activities is associated with various types of exposures and host factors, possibly originating from early childhood. Since many carcinogenic compounds require metabolic activation before being capable of reacting with cellular macromolecules, individual features of carcinogen metabolism may play an essential role in the development of environmental cancer.1 As individual response to environmental mutagens and carcinogens vary there is no pure distinction between purely genetic or environmental cancers. Often there is no incompatibility between environmental and genetic origin of cancer as is the case e.g. with smoking where a chemical mixture induces cancer but individuals show different sensitivity to these agents causing a cancer. A complicating factor is the multistage etiology of carcinogenesis implying the involvement of many distinct events. However, it has become evident that the enzymes activating and inactivating exogenous carcinogens are involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Raunio, H., Husgafvel-Pursiainen, K., Anttila, S., Hietanen, E., Hirvonen, A., and Pelkonen, O. Diagnosis of polymorphisms in carcinogen-activaitng and inactivating enzymes and cancer susceptibility-a review. Gene 159: 113–121 (1995).

    Article  PubMed  CAS  Google Scholar 

  2. Swift, M., Morrell, D., Massey, R.B., and Chase, C.L. Incidence of cancer in 161 families affected by ataxia-teleangiectasia. N. Engl. J. Med. 325: 1831–1836 (1991).

    Article  PubMed  CAS  Google Scholar 

  3. Vainio, H. Biomarkers in metabolic subtyping-Relevance for environmental cancer control. Arch. Toxicol. (Suppl. 20 ): 303–310 (1998).

    Article  CAS  Google Scholar 

  4. Kleihues, P., Schauble, B., zur Hausen, A., Esteve, J., and Ohkagi, H. Tumors associated with p53 germline mutations: a synopsis of 91 families. Am. J. Pathol. 150: 1–13 (1997).

    PubMed  CAS  Google Scholar 

  5. Li, F.P. The 4`h American Cancer Society Award for Research Excellence in Cancer Epidemiology and Prevention. Phenotypes, genotypes, and interventions for hereditary cancers. Cancer Epidem. Biomarkers Prey. 4: 579–582 (1995).

    CAS  Google Scholar 

  6. Malkin, D., Jolly, K.W., Barbier, N., Look, A.T., Friend, S.H., Gebhardt, M.C., Andersen, T.L., Borresen, A.L., Li, F.P., Garber, J., and al. Germline mutations of the p53 tumor-suppressor gene in children and young adults with second malignant neoplasms. N. Engl. J. Med. 326: 1309–1315 (1992).

    Article  PubMed  CAS  Google Scholar 

  7. Nebert, D.W., McKinnon, R.A., and Puga, A. Human drug-metabolizing enzyme polymorphisms: effects on risk of toxicity and cancer. DNA Cell Biol. 15: 273–280 (1996).

    Article  PubMed  CAS  Google Scholar 

  8. Gooderham, N.J., Murray, S., Lynch, A.M., Edwards, R.J., Yadollahi-Farsani, M., Bratt, C., Rich, K.J., Zhao, K., Murray, B.P., Bhadresa, S., Crosbie, S.J., Boobis, A.R., and Davies, D.S. Heterocyclic amines: evaluation of their role in dietassociated human cancer. Br. J. Clin. Pharmacol. 42: 91–98 (1996).

    Article  PubMed  CAS  Google Scholar 

  9. Catteau, A., Bechtel, Y.C., Poisson, N., Bechtel, P.R., and Bonaiti-Pellie, C. A population and family study of CYP1A2 using caffeine urinary metabolites. Eur. J. Clin. Pharmacol. 47: 423–430 (1995).

    Article  PubMed  CAS  Google Scholar 

  10. Kadlubar, F.F. Biochemical individuality and its implications for drug and carcinogen metabolism: Recent insights from acetyltransferase and cytochrome P4501A2 phenotyping and genotyping in humans. Drug. Metab. Disp. 26: 37–46 (1994).

    CAS  Google Scholar 

  11. MacLeod, S.L., Tang, Y.-M., Yokoi, T., Kamataki, T., Doublin, S., Lawson, B., Massengill, J., Kadlubar, F.F., and Lang, N.P. The role of recently discovered genetic polymorphism in the regulation of the human CYP1A2 gene. Proc. Amer Assoc. Cancer. Res. 396:•• (1998).

    Google Scholar 

  12. Tang, B.K., Zubovits, T., and Kalow, W. Determination of acetylated caffeine metabolites by high-performance exclusion chromatography. J. Chromatogr. 375: 170–173 (1986).

    Article  CAS  Google Scholar 

  13. Buters, J.T.M., Tang, B.-K., Pineau, T., Gelboin, H.V., Kimura, S., and Gonzalez, F.J. Role of CYP1A2 in caffeine pharmacokinetics and metabolism: studies using mice deficient in CYP1A2. Pharmacokinetics 6: 291–296 (1996).

    Article  CAS  Google Scholar 

  14. Petersen, D.D., McKinney, C.E., Ikeya, K., Smith, H.H., Bale, A.E., McBride, O.W., and Nebert, D.W. Human CYP1A1 gene: cosegregation of the enzyme inducibility phenotype and an RFLP. Am. J. Hum. Genet. 48: 720–725 (1990).

    Google Scholar 

  15. Wedlund, P.J., Kimura, S., Gonzales, EJ., and Nebert, D.W. 1462 mutation in the human CYP1A1 allele gene: lack of correlation with either the MspI 1.9 kb (M2) allele or CYP1A1 inducibility in a three-generation family of East Mediterraean descent. Pharmacogenetics 4: 21–26 (1994).

    Article  PubMed  CAS  Google Scholar 

  16. Crofts, F, Taioli, E., Trachman, J., Cosma, G.N., Currie, D., Toniolo, P., and Garte, S.J. Functional significance of different human CYP1A1 genotype, mRNA expression, and enzymatic activity in humans. Pharmacokinetics 4: 242–246 (1994).

    Google Scholar 

  17. Landi, M.T., Bertazzi, EA., Shields, P.G., Clark, G., Lucier, G.W., Garte, S.J., Cosma, G., and Caporaso, N.E. Association between CYP1A1 genotype, mRNA expression and enzymatic activity in humans. Pharmacokinetics 4: 242–246 (1994).

    Article  CAS  Google Scholar 

  18. Kawajiri, K., Nakachi, K., Imai, K., Yoshii, A., Shinoda, N., and Watanabe, J. Identification of genetically high risk individuals to lung cancer by DNA polymorphisms of the cytochrome P4501A1 gene. FEBS Lett. 263: 131–133 (1990).

    Article  PubMed  CAS  Google Scholar 

  19. Nakachi, K., Imai, K., Hayashi, S., Watanabe, S., and Kawajiri, K. Genetic susceptibility of squamous cell carcinoma of the lung in relation to cigarette smoking dose. Cancer Res. 51: 5177–5189 (1991).

    PubMed  CAS  Google Scholar 

  20. Hayashi, S.I., Watanabe, J., Nakachi, K., and Kawajiri, K. Genetic linkage of lung cancer-associated MspI polymorhisms with amino acid replacement in the heme binding region of the human cytochrome P450IA1 gene. J. Biochem. 110: 407–411 (1991).

    PubMed  CAS  Google Scholar 

  21. Shields, P.G., Sugimura, H., Caporaso, N.E., Petruzzelli, S.F., Bowman, E.D., Trump, B.F., Weston, A., and Harris, C.C. Polycyclic aromatic hydrocarbon-DNA adducts and the CYP1A1 restriction fragment length polymorphism. Environ. Health Perspect. 98: 191–194 (1992).

    Article  PubMed  CAS  Google Scholar 

  22. Tefre, T., Ryberg, D., Haugen, A., Nebert, D.W., Skaug, V., Brogger, A., and Borresen, A L. Human CYP1A1 (cytochrome P1450) gene: lack of association between the MspI restriction fragment length polymorphism and incidence of lung cancer in a Norwegian population. Pharmacogenetics 1: 20–25 (1991).

    Article  PubMed  CAS  Google Scholar 

  23. Hirvonen, A., Husgafvel-Pursiainen, K., Karjalainen, A., Anttila, S., and Vainio, H. Point-mutational MspI and Ile-Val polymorphisms closely linked in the CYP1A1 gene: Lack of association with susceptibility to lung cancer in a Finnish Study population. Cancer Epidem. Biomarkers Prevention 1: 485–489 (1992).

    CAS  Google Scholar 

  24. Nakachi, K., Imai, K., Hayashi, S., and Kawajiri, K. Polymorphisms of the CYP1A1 and glutathione S-transferase genes associated with susceptibility to lung cancer in relation to cigarette dose in a Japanese population. Cancer Res. 53: 2994–2999 (1993).

    PubMed  CAS  Google Scholar 

  25. Okada, T., Kawashima, K., Fukushi, S., Minakuchi, T., and Nishimura, S. Association between a cytochrome P450 CYP1A1 genotype and incidence of lung cancer. Pharmacogenetics 4: 333–340 (1994).

    Article  PubMed  CAS  Google Scholar 

  26. Lang, N.P., Butler, M.A., Massengill, J., Lawson, M., Stotts, R.C., Hauer-jensen, M., and Kadlubar, F.F. Rapid metabolic phenotypes for acetyltransferase and cytochrome P4501A2 and putative exposure to food-borne heterocyclic amines increase the risk for colorectal cancer or polyps. Cancer Epidemiol. Biomarkers & Prev. 3: 675–682 (1994).

    CAS  Google Scholar 

  27. London, S.J., Daly, A.K., Thomas, D.C., Caporaso, N.E., and Idle, J.R. Methodological issues in the interpretation of studies of the CYP2D6 genotype in relation to lung cancer risk. Pharmacogenetics 4: 107–108 (1994).

    Article  PubMed  CAS  Google Scholar 

  28. Caporaso, N.E., Tucker, M.A., Hoover, R.N., Hayes, R.B., Pickle, L.W., Issaq, H.J., Muschik, G.M., Green-Gallo, L., Buivys, D., Aisner, S., Resau, J.H., Trump, B.E, Tollerud, D., Weston, A., and Harris, C.C. Lung cancer and the debrisoquine metabolic phenotype. J. Natl. Cancer Inst. 82: 1264–1272 (1990).

    Article  PubMed  CAS  Google Scholar 

  29. Stucker, I., Cosme, J., Laurent, Ph., Cenée, S., Beaune, Ph., Bignon, J., Depierre, A., Milleron, B., and Hémon, D. CYP2D6 genotype and lung cancer risk according to histologic type and tobacco exposure. Carcinogenesis 16: 2759–2764 (1995).

    Article  PubMed  CAS  Google Scholar 

  30. Bouchardy, C., Benhamou, S., and Dayer, P. The effect of tobacco on lung cancer risk depends on CYP2D6 activity. Cancer. Res. 56: 251–253 (1996).

    PubMed  CAS  Google Scholar 

  31. Wynder, E.L. and Hoffmann, D. Smoking and lung cancer: scientific challenges and opprotunities. Cancer Res. 54: 5284–5295 (1994).

    PubMed  CAS  Google Scholar 

  32. Agundez, J.A.G., Ledesma, M.C., Benitez, J., Ladero, J.M., Rodriguez-Lescure, A., Diaz-Rubio, E., and Diaz-Rubio, M. CYP2D6 genes and risk of liver cancer. Lancet 345: 830–831 (1995).

    Article  PubMed  CAS  Google Scholar 

  33. Yu, M.-W., Gladek-Yarborough, A., Chiamprasert, S., Santella, R.M., Liaw, Y.-E, and Chen, C.-J. Cytochrome P450 2E1 and glutathione S-transferase Ml polymorphisms and susceptibility to hepatocelluar carcinoma. Gastroenterology 109: 1266–1273 (1995).

    Article  PubMed  CAS  Google Scholar 

  34. Tsutsumi, M., Takada, A., and Wang, J.-S. Genetic polymorphisms of cytochrome P4502E1 related to the development of alcoholic liver disease. Gastroenterology 107: 1430–1435 (1994).

    PubMed  CAS  Google Scholar 

  35. Brockmöller, J., Kerb, R., Drakoulis, N., Nitz, M., and Roots, I. Genotype and phenotype of glutathione S-transferase class m isoenzymes m and y in lung cancer patients and controls. Cancer Res. 53: 1004–1011 (1993).

    PubMed  Google Scholar 

  36. Hirvonen, A., Husgafvel-Pursiainen, K., Anttila, S., and Vainio, H. The GSTM1 null genotype as a potential risk modifier for squamous cell carcinoma of the lung. Carcinogenesis 14: 1479–1481 (1993).

    Article  PubMed  CAS  Google Scholar 

  37. Zhong, S., Howie, A.E, Ketterer, B., Taylor, J., Hayes, J.D., Beckett, G.J., Wathen, C.G., Wolf, C.R., and Spurr, N.K. Glutathione S-transferase m locus: use of genotyping and phenotyping assays to assess association with lung cancer susceptibility. Carcinogenesis 12: 1533–1537 (1991).

    Article  PubMed  CAS  Google Scholar 

  38. Kihara, M., Kihara, M., and Noda, K. Lung cancer risk of GSTM1 null genotype is dependent on the extent of tobacco smoke exposure. Carcinogenesis 15: 415–418 (1994).

    Article  PubMed  CAS  Google Scholar 

  39. Bell, D.A., Taylor, J.A., Paulson, D.F., Robertson, C.N., Mohler, J.L., and Lucier, G.W. Genetic risk and carcinogen exposure: a common inherited defect of the carcinogen-metabolism gene glutathione S-transferase M1 (GSTM1) that increases susceptibility to bladder cancer. J. Natl. Cancer Inst. 85: 1159–1164 (1993).

    Article  PubMed  CAS  Google Scholar 

  40. Brockmöller, J., Kerb, R., Drakoulis, N., Staffeldt, B., and Roots, I. Glutathione S-transferase Ml and its variants A and B as host factors of bladder cancer susceptibility: A case-control study. Cancer Res. 54: 4103–4111 (1994).

    Google Scholar 

  41. Ilett, K.E, David, B., Dethcon, P., Castleden, W, and Kwa, R. Acetylator phenotype in colorectal carcinoma. Cancer Res. 47: 1466–1469 (1991).

    Google Scholar 

  42. Bell, D.A., Stephens, E.A., Castranio,T., Umbach, D.M., Watson, M., Deakin, M., Elder, M., Henrickse, C., Duncan, H., and Strange, R.C. Polyadenylation polymorphism in the acetyltransferase 1 gene (NAT1) increases risk of colorectal cancer. Cancer Res. 55: 3537–3542 (1995).

    CAS  Google Scholar 

  43. Bartsch, H. and Hietanen, E. The role of individual susceptibility in cancer burden related to environmental exposure. Environ. Health Perspect. 104 (Suppl 3): 569–577 (1996).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hietanen, E. (1999). Significance of Genetic Polymorphisms in Cancer Susceptibility. In: Zappia, V., Della Ragione, F., Barbarisi, A., Russo, G.L., Iacovo, R.D. (eds) Advances in Nutrition and Cancer 2. Advances in Experimental Medicine and Biology, vol 472. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3230-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3230-6_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3331-7

  • Online ISBN: 978-1-4757-3230-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics