Stilbenes and Bibenzyls with Potential Anticancer or Chemopreventive Activity

  • Fulvia Orsini
  • Luisella Verotta
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 472)


Stilbenes and bibenzyls are widely distributed in the plant kingdom both in lower plants (liverworts mostly) and in higher plants (gymnosperms and angiosperms).


Chemopreventive Activity Potential Anticancer Arachidonate Metabolism Polygonum Cuspidatum Rhei Rhizoma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gorham John (1995). The biochemistry of stilbenoids Chapman & Hall London.Google Scholar
  2. 2.
    Deshpande V.H., Srinivasan R., and Rao A.V.R. (1975). Wood phenolics of Morus species. IV. Phenolics of the heartwood of five Morus species. Ind. J. Chem. 13, 453–457.Google Scholar
  3. 3a).
    Gollapudi S.R., Telikepalli H., and Keshavarz-Shokri A. (1989). Glepidotin C: a minor antimicrobial bibenzyl from Glycyrrhiza lepidota. Phytochemistry 28, 3556–2357CrossRefGoogle Scholar
  4. 3b).
    Fukai T., Wang Q.W., and Nomura T. (1991). Six prenylated phenols from Glycyrrhiza uralensis. Phytochemistry 30, 1245–1250.CrossRefGoogle Scholar
  5. 4.
    Hashimoto T., Hasegawa K., and Yamaguchi H. (1974). Structure and synthesis of batatasins, dormancy-inducing substances of yam bulbils. Phytochemistry 13, 2849–2852.CrossRefGoogle Scholar
  6. 5.
    Goda Y. and Sankawa U. (1985). Symposium Papers, 105`h Annual Meeting of the Pharmacological Society of Japan, Kanazawa, Japan. 468.Google Scholar
  7. 6.
    Ghisalberti E., Jefferies P.R., and McAdam P. (1981). Isoprenylated resorcinol derivatives from Glycyrrhiza acanthocarpa. Phytochemistry 20, 1059–1061.CrossRefGoogle Scholar
  8. 7a).
    Rogers C.B. and Verotta L. (1996). Chemistry and biological properties of the African Combretaceae. In: Hostettmann K., Chinyanganya F, Maillard M., and Wolfender J.L. (eds) Rogers C.B. and Verotta L. 121–141. University of Zimbabwe PublicationsGoogle Scholar
  9. 7b).
    Verotta L. and Rogers C.B. (1997). The Hiccup Nut. Combretum species as source of bioactive compounds. In: Verotta L. (eds) Virtual Activity, Real Pharmacology. Different Approaches to the Search for Bioactive Compounds from Natural Sources. (1997). pag. 209–225. Research Signpost, Trivandrum, IndiaGoogle Scholar
  10. 8a).
    Pettit G.R., Cragg G.M., Herald D.L., Schmidt J.M., and Lohavanijaya P. (1982). Isolation and structure of combetastatin. Can. J. Chem. 60, 1374–1376Google Scholar
  11. 8b).
    Pettit G.R., Cragg G.M., and Singh S.B. (1987). Antineoplastic agents, 122. Constituents of Combretum caffrum. J. Nat. Prod. 50, 386–391Google Scholar
  12. 8c).
    Pettit G.R. and Singh S.B. (1987). Isolation, structure, and synthesis of combretastin A-2, A-3, and B-2. Can. J. Chem. 65, 2390–2396CrossRefGoogle Scholar
  13. 8d).
    Malan E. and Swinny E. (1993). Substituted bibenzyls, phenanthrenes, and 9,10-dihydrophenanthrenes from the heartwood of Combretum apiculatum. Phytochemistry, 33, 1139–1142CrossRefGoogle Scholar
  14. 8e).
    Pettit G.R., Singh S.B., Hamel E., Lin C.M., Alberts D.S., and Garcia-Kendall D. (1989). Isolation and structure od the strong cell growth and tubulin inhibitor combretastatin A-4. Experientia 45, 209–211.PubMedCrossRefGoogle Scholar
  15. 9.
    Miyase T, Ueno A., Takizawa N., Kobayashi H., and Karasawa H. (1988). Studies on the glycosides of Epimedium grandiflorum Morr. Var. thunbergianum (Miq.) Nakai III. Chem. Pharm. Bull. 36, 2475–2484.Google Scholar
  16. 10.
    Orsini F., Pelizzoni F., Bellini B., and Miglierini G. (1997). Synthesis of biologically active polyphenolic glycosides (combretastatin and resveratrol series). Carbohydrate Research 301, 95–109.PubMedCrossRefGoogle Scholar
  17. 11.
    Langcake P. (1981). Disease resistance of Vitis spp. and the production of the stress metabolites resveratrol, e-viniferin and pterostilbene. Physiol. Plant Pathol. 18, 213–226.Google Scholar
  18. 12a).
    Klimek B. (1973). Evaluation of the usefulness of some Rheum L. species in medical treatment. Part I. Occurence of anthraquinone compounds and stilbene derivatives. Ann. Acad. Med. Lodz, 14, 133–148Google Scholar
  19. 12b).
    Banks H.J., and Cameron D.W. (1971). A new natural stilbene glucoside from Rheum rhaponticum (Polygonaceae). Aust. J. Chem. 24, 2427–2430.CrossRefGoogle Scholar
  20. 13.
    Orsini E, Pelizzoni F, Verotta L., Aburjai T., and Rogers C.B. (1997). Isolation, synthesis, and antiplatelet aggregation activity of resveratrol 3–043-D-glucopyranoside and related compounds. J. Nat. Prod. 60, 1082–1087.Google Scholar
  21. 14a).
    Nonaka G., Minami M., and Nishioka I. (1977). Studies on rhubarb (Rhei rhizoma). III. Stilbenes glycosides. Chem. Pharm. Bull. 25, 2300–2305Google Scholar
  22. 14b).
    Kashiwada Y., Nonaka G.I., and Nishioka I. (1984). Studies on rhubarb (Rhei rhizoma). VI. Isolation and characterisation of stilbenes Chem. Pharm. Bull. 32, 3501–3517.Google Scholar
  23. 15.
    Brinker A.M. and Seigler D.S. (1991). Isolation and identification of piceatannol as a phytoalexin from sugarcane. Phytochemistry 30, 3229–3232CrossRefGoogle Scholar
  24. Brinker A.M. and Seigler D.S. (1993). Time course of piceatannol accumulation in resistant and susceptible sugarcane stalks after inoculation with Colletotrichum falcatum Physiol. Mol. Plant Pathol. 42, 169–176.CrossRefGoogle Scholar
  25. 16.
    Qiu E, Komatsu K., Kawasaki K., Saito K., Yao X., and Kano Y. (1996). A novel stilbene glucoside, oxyresveratrol 3’-O-13-glucopyranoside, from the root bark of Morus alba. Planta Med. 62, 559–561.PubMedCrossRefGoogle Scholar
  26. 17.
    Teguo P.W., Fauconneau B., Deffieux G., Huguet E, Vercauteren J., and Merillon J.M. (1998). Isolation, identification, and antioxidant activity of three stilbene glucosides newly extracted from Vitis vinifera cell cultures. J. Nat. Prod. 61, 655–657.Google Scholar
  27. 18.
    Fernandez M.A., Pedro J.R., and Seoane E. (1983). Two polyhydroxystilbenes from stems of Phoenix dactylifera. Phytochemistry 22, 2819–2821.CrossRefGoogle Scholar
  28. 19a).
    Aguamah E., Langcake P., Leworthy D.P., Page J.A., Pryce R.J., and Strange R.N. (1985). Two novel stilbene phytoalexins from Arachis hypogaea. Phytochemistry 20, 1381–1383CrossRefGoogle Scholar
  29. 19b).
    Wotton H.R. and Strange R.N. (1985) Circumstantial evidence for phytoalexin involvement in the resistance of peanuts to Aspergillus flavus. J. Gen. Microbiol. 131, 487–494PubMedGoogle Scholar
  30. Cooksey C.J., Garratt P.J., Richards S.E., and Strange R.N. (1988). A dienyl stilbene phytoalexin from Arachis hypogaea. Phytochemistry 27, 1015–1016CrossRefGoogle Scholar
  31. 20.
    Shimuzu K., Kondo R., Sakai K., Lee S.O., and Sato H. (1998). The inhibitory components from Artocarpus incisus on melanin biosynthesis. Planta Medica 64, 408–412.CrossRefGoogle Scholar
  32. 21a).
    Pelizzoni E, Verotta L, Rogers C.B., Colombo R., Pedrotti B., Balconi G., Erba E., and D’Incalci M. (1993). Cell growth inhibitor constituents from Combretum kraussii Nat. Prod. Lett. 1 (4), 273CrossRefGoogle Scholar
  33. 21b).
    Pelizzoni E, Colombo R., D’Incalci M., and Verotta L. (1992). Combretastatin derivatives with anti-tumour activity, and process for the preparation thereof. P. WO 9405682 Al 940317. Priority IT 92MI2033 920831. CA 121: 73872.Google Scholar
  34. 22.
    Fossati S. Thesis dissertation in Biological Sciences. University of Milano Italy (A.a. 1996–1997)Google Scholar
  35. 23.
    Marston, A. and Hostettmann K. (1994). Counter-current chromatography as a preparative tool-applications and perspectives. J. Chromatogr. A, 658, 315–341.Google Scholar
  36. 24a).
    Crombie L., Crombie W.M.L., and Jamieson S.V. (1980). Extractives of Thailand Cannabis: synthesis of canniprene and isolation of new geranylated and prenylated chrysoeriols. Tetrahedron Lett. 3607–3610Google Scholar
  37. 24b).
    Reimann E. (1969). Natural stilbenes. Synthesis of polyhydroxystilbene ethers by the Wittig reaction. Chem. Ber. 102, 2881–2888CrossRefGoogle Scholar
  38. 24c).
    Reimann E. (1970). Naturliche polyhydroxystilbene. Die synthese von oxyresveratrol, piceatannol, and rhapontigenin “ Tetrahedron Lett. 47, 4051–4053CrossRefGoogle Scholar
  39. 24d).
    Reimann E (1971). Natural stilbenes. II. Synthesis of polyhydroxystilbenes. Justus Liebigs Ann. Chem. 750, 109–127.CrossRefGoogle Scholar
  40. 25.
    Cardona M.L., Fernandez M.I., Garcia M.I., and Pedro J.R. (1986). Synthesis of natural polyhydroxystilbenes. Tetrahedron 42, 2725–2730.CrossRefGoogle Scholar
  41. 26a).
    Bachelor F.W., Loman A.A., and Snowdon L.R., (1970). Synthesis of pinosylvin and related heartwood stilbenes. Can. J. Chem. 48, 1554–1557Google Scholar
  42. 26b).
    Wheeler O.H. and Battle de Pabon H.N. (1965). Synthesis of stilbenes. A comparative study. J. Org. Chem. 30, 1473–1477.CrossRefGoogle Scholar
  43. 27.
    Medarde M., Pelaez-Lamamie de Clirac R., Lopez J.L., and San Feliciano A. (1994). A versatile approach to the synthesis of Combretastatins. J. Nat. Prod. 57, 1136–1144.Google Scholar
  44. 28.
    Ohsumi K., Nakagawa R., Fukuda Y., Hatanaka T., Morinaga Y., Nihei Y., Ohishi K., Suga Y., Akiyama Y., and Tsuji T. (1998). Novel combretastatin analogues effective against murine solid tumors: design and structure-activity relationships. J. Med. Chem. 41, 3022–3032.Google Scholar
  45. 29.
    Alonso E., Ramón D.J., and Yus M. (1997). Simple synthesis of 5-substituted resorcinols: a revisited family of interesting molecules. J. Org. Chem. 62, 417–421.Google Scholar
  46. 30.
    Crombie L.W., Crombie W.M., and Firth D.F. (1988). Synthesis of bibenzyl cannabinoids, hybrids of two biogenetic series found in Cannabis sativa. J. Chem. Soc. Perkin Trans. 1, 1263–1270.Google Scholar
  47. 31.
    Brown R.T., Fox B.W., Hadfield J. A, McGown A.T., Mayalarp S.P., Pettit G.R., and Woods J.A. (1995). Synthesis of water-soluble derivatives of Combretastatin A-4. J. Chem. Soc. Perkin Trans. I, 577–581.Google Scholar
  48. 32.
    Cichewicz, R.H. and Kouzi Samir A. (1998). Biotransformation of resveratrol to Piceid by Bacillus cereus. J. Nat. Prod. 61, 1313–1314.Google Scholar
  49. 33.
    Pettit G.R., Temple C., Narayanan Ven L., Varma R., Simpson M.J., Boyd M.R., Rener G.A., and Bansal N. (1995). Anti-Cancer Drug Des. 10, 299–309.Google Scholar
  50. 34a).
    Williams R. and Rutledge R. (1998). Recent phytoestrogen research“ Chemistry and Industry, 14–16Google Scholar
  51. 34b).
    Gehm B.D., McAndrews J.M., Chien P.Y., and Jameson J.L. (1997). Resveratrol, a polyphenolic compound found in grapes and wine, is an agonist of the estrogens receptor. Proc. Natl. Acad. Sci. USA 94, 14138–14143.Google Scholar
  52. 35.
    Schwartner C., Bors W, Michel C., Franck U., Muller-Jakic B., Nenninger A., Asakawa Y., and Wagner H. (1995). Effects of Marchantins and related compounds on 5-lipoxygenase and cycloxygenase and their antioxidant properties: a structure activity relationship study. Phytomedicine 2, 113–117.PubMedCrossRefGoogle Scholar
  53. 36.
    Kimura Y., Okuda H., and Arichi S. (1985). Effects of stilbenes on arachidonate metabolism in leukocytes. Biochim. Biophys. Acta 834, 275–278.Google Scholar
  54. 37.
    Arichi H., Kimura Y., and Okuda H. (1982). Effects of stilbene components of the roots of Polygonum cuspidatum Sieb. Et Zucc. on lipid metabolism. Chem. Pharm. Bull. 30, 1766–1770.Google Scholar
  55. 38.
    Frankel E.N., Waterhouse A.L., and Kinsella J.E. (1993). Inhibition of human LDL oxidation by resveratrol. Lancet 341, 1103–1104.PubMedCrossRefGoogle Scholar
  56. 39.
    Rotondo S., Rajtar G., Manarini S., Celardo A., Rotilio D., De Gaetano G., Evangelista V., and Cerletti C. (1998). Effect of trans-resveratrol, a natural polyphenolic compound, on human polymorphonuclear leukocyte function. British J. Pharmacol. 123, 1691–1699.Google Scholar
  57. 40a).
    Pace-Asciak C.R., Rounova O., Hahn S.E., Diamandis E.P., and Goldberg D.M. (1996). Wines and grape juice as modulators of platelet aggregation in healthy human subjects. Clin. Chim. Acta. 246, 163–182Google Scholar
  58. 40b).
    Pace-Asciak C.R., Hahn S E, Diamandis E.P., Soleas G., and Goldberg D.M. (1995). The red wine phenolics trans-resveratrol and quercetin block human platelet aggregation and eicosanoid synthesis: Implication for protection against coronary hearth disease. Clin. Chim. Acta 235, 207–219.Google Scholar
  59. 41.
    Jang M., Cai L., Udeani G.O., Slowing C.V., Thomas C.F., Beecher C.W.W., Fong H.H.S., Farnsworth N.R., Kinghorn A.D., Metha G.R., Moon R.C., and Pezzuto J.M. (1997). Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275, 218–220.PubMedCrossRefGoogle Scholar
  60. 42.
    Guatteo E., Bianchi L., Faravelli L., Verotta L., Pelizzoni E, Rogers C.B., and Wanke E. (1996). A novel K’ channel blocker isolated from hiccup nut toxin. Neuroreport 2575–2579.Google Scholar
  61. 43.
    Orsini E, Verotta L., and Wanke E. Unpublished results.Google Scholar
  62. 44.
    Kimura Y., Ohminami H., Okuda H., Baba K., Kozawa M., and Arichi S. (1983). Effects of stilbene components of roots of Polygonum spp. on liver injury in peroxidized oil fed rats. Planta Med. 49, 51–54.CrossRefGoogle Scholar
  63. 45.
    Fontecave M., Lepoivre M., Elleingand E., Gerez C., and Guitter O. (1998). Resveratrol, a remarkable inhibitor of ribonucleotide reductase. FEBS Lett. 421, 277–279PubMedCrossRefGoogle Scholar
  64. 46.
    Sun N.J., Woe S.H., Cassady J.M., and Snapka R.M. (1998). DNA Polymerase and topoisomerase II inhibitors from Psoralea coryfolia. J. Nat. Prod. 61, 362–366.Google Scholar
  65. 47.
    Della Ragione E, Cucciolla V., Borriello A., Della Pietra V., Raciuppi L., Soldati G., Manna C., Galletti P., and Zappia V. (1998). Resveratrol arrests the cell division cycle at S/G2 phase transition. Biochem. Biophys. Res. Commun. 250, 53–58.Google Scholar
  66. 48.
    Jayatilake G.S., Jayasuriya H., Lee E.S., Koonchanok L.N., Geahlen R.L., Ashendel C.L., McLauglin J.L., and Chang C.J. (1993). Kinase inhibitors from Polygonum cuspidatum. J. Nat. Prod. 56, 1805–1810.Google Scholar
  67. 49.
    Deanin G.G., Oliver J.M., and Burg D.L. (1993). Piceatannol is a selective inhibitor of Fc epsilon-R1induced protein tyrosine phosphorylation and a strong inhibitor of receptor-mediated signal transduction in RBL-2H3 rat-tumor mast-cells. J. Immunol. 150, 221.Google Scholar
  68. 50a).
    Mannila E. and Talvitie A. (1992). Stilbenes from Picea abies bark. Phytochemistry 31, 3288–3289CrossRefGoogle Scholar
  69. 50b).
    Mannila E. and Talvitie A. (1993). Combretastatin analogs via hydration of stilbene derivatives. Justus Liebigs Ann. Chem. 1037.Google Scholar
  70. Mannila E., Talvitie A., and Kolehmainen E. (1993). Anti-leukaemic compounds derived from stilbenes in Picea abies bark. Phytochemistry 33, 813–816.CrossRefGoogle Scholar
  71. 51.
    Pelizzoni E, Bellini B., and Miglierini G. It. Pat. MI94A/000921 (1994).Google Scholar
  72. 52.
    Cushman M., Nagarathnam D., Gopal D., Chakraborti A.K., Lin C.M., and Hamel E. (1991). Synthesis and evaluation of stilbene and dihydrostilbene derivatives as potential anticancer agents that inhibit tubulin polymerisation. J. Med. Chem. 34, 2579–2588PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Fulvia Orsini
    • 1
  • Luisella Verotta
    • 1
  1. 1.Dipartimento di Chimica Organica e IndustrialeUniversità degli Studi di MilanoMilanItaly

Personalised recommendations