Skip to main content

On the Efficiency of Splitting and Projection Methods for Large Strictly Convex Quadratic Programs

  • Chapter
Nonlinear Optimization and Related Topics

Part of the book series: Applied Optimization ((APOP,volume 36))

Abstract

In this paper we analyse the behaviour of the classical splitting and projection methods for solving large-scale strictly convex quadratic programming problems with linear constraints. The drawbacks of these classical methods are overcome by the recent modified projection-type and variable projection methods. These new approaches have the same complexity and a similar structure: each iteration consists of a projection step followed by a correction formula. Nevertheless, on the contrary of the modified projection-type methods, the variable projection method does not require to prefix any scalar parameters and is weakly dependent on a priori scaling of the objective function. The results of a numerical experimentation permit to compare the new approaches with the classical splitting and projection methods and to evaluate the effectiveness of the variable projection method as solver of large quadratic programs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.W. Cottle, J.S. Pang, R.E. Stone. (1992), The Linear Complementarity Problem, Academic Press, San Diego.

    MATH  Google Scholar 

  2. C.W. Cryer (1971), “The solution of a quadratic programming problem using systematic overrelaxation,” SIAM J. Control, 9, 385–392.

    Article  MathSciNet  Google Scholar 

  3. S. Dafermos (1980), “Traffic equilibrium and variational inequalities,” Transportation Sci., 14, 42–54.

    Article  MathSciNet  Google Scholar 

  4. N. Dyn., J. Ferguson (1983), “The numerical solution of equality-constrained quadratic programming problems,” Math. Comp., 41, 165–170.

    MathSciNet  MATH  Google Scholar 

  5. M. Fukushima (1992), “Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems,” Math. Programming, 53, 99–110.

    Article  MathSciNet  MATH  Google Scholar 

  6. D.J. Evans (1968), “The use of preconditioning in iterative methods for solving linear equations with symmetric positive definite matrices,” J. IMA, 4, 295–314.

    MATH  Google Scholar 

  7. E. Galligani, V. Ruggiero (1992), “The arithmetic mean preconditioner for multivector computers,” Intern. J. Computer Math., 44, 207–222.

    Article  MATH  Google Scholar 

  8. E. Galligani, V. Ruggiero, L Zanni (1996), “Splitting methods for constrained quadratic programs in data analysis,” Computers Math. Applic., 32, 1–9.

    Article  MathSciNet  MATH  Google Scholar 

  9. E. Galligani, V. Ruggiero, L. Zanni (1997), “Splitting methods for quadratic optimization in data analysis,” Intern. J. Computer Math., 63, 289–307.

    Article  MathSciNet  Google Scholar 

  10. E. Galligani, V. Ruggiero, L. Zanni (1998), “Parallel solution of large scale quadratic programs,” in High Performance Algoritms and Software in Nonlinear Optimization, ( R. De Leone, A. Murli, P. Pardalos, G. Toraldo eds.), Kluwer Academic Publishers, Dordrecht, 189–205.

    Chapter  Google Scholar 

  11. B. He (1994), “Solving a class of linear projection equations,” Numer. Math., 68, 71–80.

    Article  MathSciNet  MATH  Google Scholar 

  12. Y.Y. Lin, J.S. Pang (1987), “Iterative methods for large convex quadratic programs: a survey,” SIAM J. Control Optim., 25, 383–411.

    Article  MathSciNet  MATH  Google Scholar 

  13. O.L. Mangasarian (1977), “Solution of symmetric linear complementarity problems by iterative methods,” J. Optim. Theory Appl., 22, 465–485.

    Article  MathSciNet  MATH  Google Scholar 

  14. O.L. Mangasarian, R. De Leone (1988), “Parallel gradient projection successive overrelaxation for symmetric linear complementarity problems and linear programs,” Ann. Oper. Res., 14, 41–59.

    Article  MathSciNet  MATH  Google Scholar 

  15. P. Marcotte, J.H. Wu (1995), “On the convergence of projection methods: application to the decomposition of affine variational inequalities,” J. Optim. Theory Appl., 85, 347–362.

    Article  MathSciNet  MATH  Google Scholar 

  16. W. Murray (1997), “Sequential quadratic programming methods for large-scale problems,” Computat. Optim. Applic., 7, 127–142.

    Article  MATH  Google Scholar 

  17. NAG Fortran Library Manual. (1998), Mark 18.

    Google Scholar 

  18. J.M. Ortega. (1972), Numerical Analysis: A Second Course, Academic Press, New York.

    MATH  Google Scholar 

  19. J.S. Pang, D. Chan (1982), “Iterative methods for variational and complementarity problems,” Math. Programming, 24, 284–313.

    Article  MathSciNet  MATH  Google Scholar 

  20. V. Ruggiero, L. Zanni (1999), “On a class of iterative methods for large—scale convex quadratic programs,” in Numerical Methods in Optimization (A. Maugeri, E. Galligani eds.), Rend. Circ. Matem. Palermo, Serie II, Suppl. 58, 205–212.

    Google Scholar 

  21. V. Ruggiero, L. Zanni, “A modified projection algorithm for large strictly convex quadratic programs,” J. Optim. Theory Appl.,to appear.

    Google Scholar 

  22. M.V. Solodov, P. Tseng (1996), “Modified projection-type methods for monotone variational inequalities,” SIAM J. Control Optim., 34, 1814–1830.

    Article  MathSciNet  MATH  Google Scholar 

  23. G.W. Stewart (1980), “The efficient generation of random orthogonal matrices with an application to condition estimators,” SIAM J. Numer. Anal., 17, 403409.

    Google Scholar 

  24. L. Zanni (1992), “On the convergence rate of two projection methods for variational inequalities in Rtm, ” Calcolo, 29, 193–212.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ruggiero, V., Zanni, L. (2000). On the Efficiency of Splitting and Projection Methods for Large Strictly Convex Quadratic Programs. In: Pillo, G.D., Giannessi, F. (eds) Nonlinear Optimization and Related Topics. Applied Optimization, vol 36. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3226-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3226-9_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4823-6

  • Online ISBN: 978-1-4757-3226-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics