Skip to main content

An approach to detect the dominant folds of proteinlike heteropolymers from the statistics of a homopolymeric chain

  • Chapter
Optimization in Computational Chemistry and Molecular Biology

Part of the book series: Nonconvex Optimization and Its Applications ((NOIA,volume 40))

  • 413 Accesses

Abstract

Statistical optimization of proteins is interpreted from the standpoint of optimal memory storage in neural networks. This approach results in the concept of an intrinsic learning rule which occurs in place of the usual learning rule in neural networks and incorporates geometric, topological and statistical constraints which make one folded shape kinetically more accessible than another. As a first step to extract this learning rule from the behavior of model chains, we approximate the free energy of proteinlike heteropolymers by an expansion about the free energy of an “equivalent homopolymer”, the coefficients of which determine a potential for heteropolymer sequences. Expansion coefficients are computed for a simple bead chain homopolymer model and the results are compared to a hydrophobic and polar (HP) model of proteins for which the optimal folds are already known.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Xiong, B. L. Buckwalter, H. Sheih, and M. H. Hecht, Proc. Natl. Acad. Sci. 92, 6349 (1995).

    Article  Google Scholar 

  2. B. I. Dahiyat and S. L. Mayo, Science 278, 82 (1997).

    Article  Google Scholar 

  3. D. D. Axe, N. W. Foster, and A. R. Fersht, Proc. Natl. Acad. Sci. 93, 5590 (1997).

    Article  Google Scholar 

  4. C. R. Robinson and R. T. Sauer, Proc. Natl. Acad. Sci. 95, 5929 (1998).

    Article  Google Scholar 

  5. E. D. Nelson, L. F. Ten Eyck, and J. N. Onuchic, Phys. Rev. Lett. 79, 3534 (1997).

    Article  Google Scholar 

  6. N. D. Socci and J. N. Onuchic, J. Chem. Phys. 103, 4732 (1995).

    Article  Google Scholar 

  7. K. F. Lau, and K. A. Dill, Macromolecules 22, 3986 (1989).

    Article  Google Scholar 

  8. P. E. Leopold, M. Montal, and J. N. Onuchic, Proc. Natl. Acad. Sci. USA 89, 8721 (1992).

    Article  Google Scholar 

  9. N. D. Socci, J. N. Onuchic, and P. G. Wolynes, Proteins 32, 136 (1998).

    Article  Google Scholar 

  10. H. Nemyer, A. Garcia, and J. Onuchic, Onuchic, Proc. Natl. Acad. Sci. 95, 5921 (1998).

    Article  Google Scholar 

  11. J. N. Onuchic, Z. Luthey — Schulten, and P. G. Wolynes Annu. Rev. Phys. Chem. 48, 539 (1997).

    Article  Google Scholar 

  12. K. A. Dill and H. S. Chan, Nature Struct. Biol. 4, 10 (1997).

    Article  Google Scholar 

  13. J. N. Onuchic, N. D. Socci, Z. Luthey — Schulten and P. G. Wolynes Folding and Design 1, 441 (1996).

    Article  Google Scholar 

  14. S. S. Plotkin, J. Wang, and P. G. Wolynes, J. Chem. Phys. 106, 2932 (1997).

    Article  Google Scholar 

  15. J. J. Hopfield, Proc. Natl. Acad. Sci. USA 79, 2554 (1982).

    Article  MathSciNet  Google Scholar 

  16. J. J. Hopfield, D. I. Feinstein, and R. G. Palmer, Nature 304, 158 (1983).

    Article  Google Scholar 

  17. V. S. Dotsenko, S. Franz, and M. Mezard, J. Phys. A27, 2351 (1994).

    Google Scholar 

  18. Dotsenko, V. S., An introduction to the theory of spin glasses and neural networks, World Scientific, Singapore (1994).

    MATH  Google Scholar 

  19. Mezard, M., Parisi, G., and Virasoro, M., Spin glass theory and beyond, World Scientific, Singapore (1987).

    MATH  Google Scholar 

  20. M. S. Friedrichs, and P. G. Wolynes, Science 246, 371 (1989).

    Article  Google Scholar 

  21. M. Sasai, and P. G. Wolynes, Phys. Rev. Lett. 65, 2740 (1990).

    Article  Google Scholar 

  22. P. G. Wolynes, in Spin glass ideas and the protein folding problem, D. L. Stein ed., World Scientific, Singapore, 225–259 (1992).

    Google Scholar 

  23. N. Qian and T. J. Sejnowski, J. Mol. Bio. 202, 865 (1988).

    Article  Google Scholar 

  24. E. D. Nelson, and J. N. Onuchic, Proc. Natl. Acad. Sci. USA 95, 10682 (1998).

    Article  Google Scholar 

  25. E. I. Shakhnovich, and A. M. Gutin, Biophys. Chem. 34, 187 (1989).

    Article  Google Scholar 

  26. V. S. Pande, A. Y. Grosberg and T. Tanaka, Folding and Design 7, 109 (1997).

    Article  Google Scholar 

  27. Pande, V. S., Grosberg, A. Yu., and Tanaka, T., Phys. Rev. E 51, 3381 (1995).

    Article  Google Scholar 

  28. T. Garel and H. Orland, Europhys. Lett. 6, 597 (1988).

    Article  Google Scholar 

  29. A. V. Finkelstein, A. Y. Bedretdinov, and A. M. Gutin, Proteins 23 142 (1995).

    Article  Google Scholar 

  30. Yaotian Fu, and P. W. Anderson, J. Phys. A 19, 1605 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  31. Gillespie, J. H., The causes of molecular evolution, Oxford University Press, New York (1991).

    Google Scholar 

  32. G. Toulouse, Commun. Phys. 2, 115 (1977).

    Google Scholar 

  33. P. W. Anderson, J. Less Common Met. 62, 291 (1978)

    Article  Google Scholar 

  34. J. D. Bryngelson, and P. G. Wolynes, Proc. Natl. Acad. Sci. USA 84, 7524 (1987).

    Article  Google Scholar 

  35. J. D. Bryngelson, J. N. Onuchic, N. D. Socci, and P. G. Wolynes, Proteins 21, 167 (1995).

    Article  Google Scholar 

  36. N. Go, Annu. Rev. Biophys. Bioeng. 12, 183 (1983).

    Article  Google Scholar 

  37. C. Anfinsen Science 181, 223 (1973).

    Article  Google Scholar 

  38. de Gennes, P.—G., J. Physique Lett. 46, L–639 (1985).

    Article  Google Scholar 

  39. V. I. Abkevich, A. M. Gutin, E. I. Shakhnovich, Proteins 4, 335 (1998).

    Article  Google Scholar 

  40. D. Thirumalai, D. K. Klimov, and S. Woodson, Theor. Chem. Acct. 1, 23 (1997).

    Google Scholar 

  41. K. Binder, Z. Physik B26, 339 (1977).

    Google Scholar 

  42. K. Binder and A. P. Young, Rev. Mod. Phys. 58, 801 (1986).

    Article  Google Scholar 

  43. M. Kimura, Neutral Theory of Evolution, Cambridge University Press, New York, (1983).

    Book  Google Scholar 

  44. de Gennes, P.-G., Rev. Nuovo Cimemto 7, 363 (1977).

    Article  Google Scholar 

  45. Y. Zhou, C. Hall and M. Karplus, Phys. Rev. Lett. 77, 2822 (1996).

    Article  Google Scholar 

  46. E. I. Shakhnovich, Phys. Rev. Lett. 72, 3907 (1994).

    Article  Google Scholar 

  47. D. Thirumalai, and Z. Guo, Biopolymers 35, 137 (1989).

    Article  Google Scholar 

  48. H. Li, R. Helling, and C. Tang, Science 273, 666 (1996).

    Article  Google Scholar 

  49. P. A. Braier, R. S. Berry, and D. J. Wales, J. Chem. Phys. 93, 8745 (1990).

    Article  Google Scholar 

  50. D. J. Wales, M. Miller, and T. Walsh, Nature 394, 758 (1998).

    Article  Google Scholar 

  51. D. J. Wales, Science 271, 925 (1996).

    Article  Google Scholar 

  52. I. M. Lifshitz, Sov. Phys. JETP 28, 1280 (1969).

    Google Scholar 

  53. A. Y. Grosberg, Phys. Usp. 40, 125 (1997).

    Article  Google Scholar 

  54. Grosberg, A. Y., and Kokhlov, A. R. Statistical physics of macromolecules, AIP Press, New York (1994).

    Google Scholar 

  55. K. W. Plaxco, K. T. Simons, D. Baker, em J. Mol. Bio. 277, 985 (1998).

    Article  Google Scholar 

  56. G. Toulouse and M. Kléman, J. Physique Lett. 37, L–149 (1976).

    Article  Google Scholar 

  57. P. G. Wolynes, Proc. Natl. Acad. Sci 93, 14249 (1996).

    Article  Google Scholar 

  58. A. Murzin, and A. Finkelstein, J. Mol. Bio. 204, 749 (1988).

    Article  Google Scholar 

  59. M. Levitt, and C. Chothia, (1976) Nature 261, 552 (1976).

    Article  Google Scholar 

  60. R. Baviera, and M. A. Virasoro, in Landscape paradigms in physics and biology: Concepts and dynamics, H. Frauenfelder et. al. eds., North—Holland, Amsterdam (1996).

    Google Scholar 

  61. Y. Zhou and M. Karplus, Proc. Natl. Acad. Sci. 94, 14429 (1997).

    Article  Google Scholar 

  62. E. M. Boczko and C. L. Brooks III, Science 269, 393 (1995).

    Article  Google Scholar 

  63. E. T. Jaynes, Physical Review 106, 620 (1957).

    Article  MathSciNet  MATH  Google Scholar 

  64. The construction rule is similar to that used in Walsh functions, J. L. Walsh, Amer. J. Math. 45, 5 (1923),

    Article  MathSciNet  MATH  Google Scholar 

  65. Harmuth, H. F., Information theory applied to space time physics, World Scientific, Singapore (1992).

    MATH  Google Scholar 

  66. A. Irbäck, C. Peterson, and F. P. Pottast, Proc. Natl. Acad. Sci 93, 9533 (1996).

    Article  Google Scholar 

  67. S. Rackovsky, Proc. Natl. Acad. Sci. 95, 8580 (1998).

    Article  Google Scholar 

  68. K. Binder and D. Heerman, Monte Carlo simulation in statistical physics, Springer Verlag, New York (1988).

    Book  MATH  Google Scholar 

  69. Toda, M., Kubo, R., and Saitô, N., Statistical physics, Springer Verlag, New York (1983).

    Google Scholar 

  70. Kadanoff, L. P. and Baym, G., Quantum statistical mechanics, Benjamin Inc., New York (1962).

    MATH  Google Scholar 

  71. R. N. and A. P. Young, J. Magn. Matt. 54–57, 191 (1986).

    Google Scholar 

  72. For ultrametricity in neural networks see, for example N. Parga and M. A. Virasoro, J. Physique 47, 1857 (1986).

    Article  MathSciNet  Google Scholar 

  73. For protein sequences see for example, M. Farach, S. Kannan, T. Warnow, Proceeding of the twenty fifth annual ACM symposium on the theory of computing, ACM digital library, (1993). which cites many of the important references on protein evolutionary trees.

    Google Scholar 

  74. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, J. Chem. Phys. 21, 1088 (1953).

    Article  Google Scholar 

  75. A. Milchev, W. Paul, and K. Binder, J. Chem. Phys. 99, 4786 (1993).

    Article  Google Scholar 

  76. E. D. Nelson, unpublished calculations.

    Google Scholar 

  77. C. N. Yang and R. L. Mills Physical Review 96, 191 (1954).

    Article  MathSciNet  Google Scholar 

  78. J. M. Kosterlitz, D. J. Thouless, and R. C. Jones, Phys. Rev. Lett. 36, 1217 (1976).

    Article  Google Scholar 

  79. D. J. Thouless, P. W. Anderson, and R. G. Palmer, Phil. Mag. 35, 593 (1977).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nelson, E.D., Wolynes, P.G., Onuchic, J.N. (2000). An approach to detect the dominant folds of proteinlike heteropolymers from the statistics of a homopolymeric chain. In: Floudas, C.A., Pardalos, P.M. (eds) Optimization in Computational Chemistry and Molecular Biology. Nonconvex Optimization and Its Applications, vol 40. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3218-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3218-4_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4826-7

  • Online ISBN: 978-1-4757-3218-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics