Skip to main content

Electrostatic Optimization in Ligand Complementarity and Design

  • Chapter
Optimization in Computational Chemistry and Molecular Biology

Part of the book series: Nonconvex Optimization and Its Applications ((NOIA,volume 40))

Abstract

Analytic and numerical methods now allow optimization of the electrostatic contribution to the free energy of association of two molecules in solution. Using a continuum electrostatic approximation based on the linearized Poisson-Boltzmann equation, the electrostatic free energy of rigid bimolecular association becomes a quadratic function of the reactant-charge distributions. By optimizing the charge distribution of one reactant, we find that the electrostatic free energy can be minimized, and made favorable in many cases. Furthermore, a rigorous method for visualizing the extent of electrostatic complementarity between two molecules has been developed. In this paper we review the framework and progress of charge optimization and discuss some of the implications emerging to date.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Z. S. Hendsch and B. Tidor. Do salt bridges stabilize proteins? A continuum electrostatic analysis. Protein Sci., 3:211–226, 1994.

    Article  Google Scholar 

  2. C. Tanford, P. K. De, and V. G. Taggart. The role of the α-helix in the structure of proteins. Optical rotatory dispersion of β-lactoglobulin. J. Am. Chem. Soc., 82:6028–6034, 1960.

    Article  Google Scholar 

  3. C. H. Paul. Building models of globular protein molecules from their amino acid sequences. I. Theory. J. Mol. Biol., 155:53–62, 1982.

    Article  Google Scholar 

  4. C. V. Sindelar, Z. S. Hendsch, and B. Tidor. Effects of salt bridges on protein structure and design. Protein Sci., 102:4404–4410, 1998.

    Google Scholar 

  5. B. Honig, K. Sharp, and A.-S. Yang. Macroscopic models of aqueous solutions: Biological and chemical applications. J. Phys. Chem., 97:1101–1109, 1993.

    Article  Google Scholar 

  6. B. Honig and A. Nicholls. Classical electrostatics in biology and chemistry. Science (Washington, D.C.), 268:1144–1149, 1995.

    Article  Google Scholar 

  7. Kim Sharp, J. Jean-Charles, and B. Honig. J. Phys. Chem., 96:3822–3828, 1992.

    Article  Google Scholar 

  8. Jian Shen and Florante A. Quiocho. Calculation of binding energy differences for receptor-ligand systems using the poisson-boltzmann method. J. Comput. Chem., 16:445–448, 1995.

    Article  Google Scholar 

  9. J. Shen and J. Wendoloski. Electrostatic binding energy calculation using the finite difference solution to the linearized Poisson-Boltzmann equation: Assessment of its accuracy. J. Comput. Chem., 17:350–357, 1996.

    Article  Google Scholar 

  10. M. K. Gilson, K. A. Sharp, and B. H. Honig. Calculating the electrostatic potential of molecules in solution: Method and error assessment. J. Comput. Chem., 9:327–335, 1988.

    Article  Google Scholar 

  11. O’M. Bockris and A. K. N. Reddy. Modern Electrochemistry. Plenum, New York, 1973.

    Book  Google Scholar 

  12. F. M. Richards. Areas, volumes, packing, and protein structure. Annu. Rev. Biophys. Bioeng., 6:151–176, 1977.

    Article  Google Scholar 

  13. M. L. Connolly. Analytical molecular surface calculation. J. Appl. Cryst., 16:548–558, 1983.

    Article  Google Scholar 

  14. M. K. Gilson and B. H. Honig. Nature (London), 330:84, 1987.

    Article  Google Scholar 

  15. Erik Kangas and Bruce Tidor. Optimizing electrostatic affinity in ligand-receptor binding: Theory, computation and ligand properties. J. Chem. Phys., 109:7522–7545, 1998.

    Article  Google Scholar 

  16. K. A. Sharp and B. Honig. Calculating total electrostatic energies with the nonlinear Poisson-Boltzmann equation. J. Phys. Chem., 94:7684–7692, 1990.

    Article  Google Scholar 

  17. J. Theodoor G. Overbeek. The role of energy and entropy in the electrical double layer. Colloids and Surfaces, 51:61–75, 1990.

    Article  Google Scholar 

  18. M. K. Gilson and B. Honig. Calculation of the total electrostatic energy of a macro-molecular system: Solvation energies, binding energies, and conformational analysis. Proteins: Struct., Funct., Genet., 4:7–18, 1988.

    Article  Google Scholar 

  19. Wolfgang K. H. Panofsky and Melba Phillips. Classical Electricity and Magnetism. Addison-Wesley, Reading, Massachusetts, second edition, 1962.

    MATH  Google Scholar 

  20. L.-P. Lee and B. Tidor. Optimization of electrostatic binding free energy. J. Chem. Phys., 106:8681–8690, 1997.

    Article  Google Scholar 

  21. G. Strang. Introduction to Linear Algebra. Wellesley-Cambridge Press, Wellesley, Massachusetts, 1993.

    MATH  Google Scholar 

  22. L. T. Chong, S. E. Dempster, Z. S. Hendsch, L.-P. Lee, and B. Tidor. Computation of electrostatic complements to proteins: A case of charge stabilized binding. Protein Sci., 7:206–210, 1998.

    Article  Google Scholar 

  23. J. Novotny and K. Sharp. Electrostatic fields in antibodies and antibody/antigen complexes. Prog. Biophys. Molec. Biol., 58:203–224, 1992.

    Article  Google Scholar 

  24. V. K. Misra, K. A. Sharp, R. A. Friedman, and B. Honig. Salt effects on ligand-DNA binding: Minor groove binding antibiotics. J. Mol. Biol., 238:245–263, 1994.

    Article  Google Scholar 

  25. V. K. Misra, J. L. Hecht, K. A. Sharp, R. A. Friedman, and B. Honig. Salt effects on protein-DNA interactions: The λcI repressor and EcoRI endonuclease. J. Mol. Biol., 238:264–280, 1994.

    Article  Google Scholar 

  26. K. A. Sharp. Electrostatic interactions in hirudin-thrombin binding. Biophys. Chem., 61:37–49, 1996.

    Article  Google Scholar 

  27. J. Novotny, R. E. Bruccoleri, M. Davis, and K. A. Sharp. Empirical free energy calculations: A blind test and further improvements to the method. J. Mol. Biol., 268:401–411, 1997.

    Article  Google Scholar 

  28. Results from our research group.

    Google Scholar 

  29. Erik Kangas and Bruce Tidor. Charge optimization leads to favorable electrostatic binding free energy. Phys. Rev. E, 59:5958–5961, 1999.

    Article  Google Scholar 

  30. Erik Kangas and Bruce Tidor.

    Google Scholar 

  31. J. G. Kirkwood. Theory of solutions of molecules containing widely separated charges with special application to zwitterions. J. Chem. Phys., 2:351–361, 1934.

    Article  Google Scholar 

  32. Charles Tanford and John G. Kirkwood. Theory of protein titration curves. i. general equations for impenetrable spheres. J. Am. Chem. Soc., 79:5333–5339, 1957.

    Article  Google Scholar 

  33. V. A. Parsegian. Ion—membrane interactions as structural forces. Ann. N. Y. Acad. Sci., 264:161–174, 1975.

    Article  Google Scholar 

  34. E. von Kitzing and D. M. Soumpasis. Electrostatics of a simple membrane model using Green’s functions formalism. Biophysical J., 71:795–810, 1996.

    Article  Google Scholar 

  35. K. A. Sharp and B. Honig. Electrostatic interactions in macromolecules: Theory and applications. Annu. Rev. Biophys. Biophys. Chem., 19:301–332, 1990.

    Article  Google Scholar 

  36. A. Nicholls, K. A. Sharp, and B. Honig. Protein folding and association: Insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins: Struct., Funct., Genet., 11:281–296, 1991.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kangas, E., Tidor, B. (2000). Electrostatic Optimization in Ligand Complementarity and Design. In: Floudas, C.A., Pardalos, P.M. (eds) Optimization in Computational Chemistry and Molecular Biology. Nonconvex Optimization and Its Applications, vol 40. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3218-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3218-4_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4826-7

  • Online ISBN: 978-1-4757-3218-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics