Skip to main content

A Coupled Scanning and Optimization Scheme for Analyzing Molecular Interactions

  • Chapter
Optimization in Computational Chemistry and Molecular Biology

Part of the book series: Nonconvex Optimization and Its Applications ((NOIA,volume 40))

Abstract

The past decade has brought major advances in the quality and variety of methods for computerized drug design and molecular docking, making the area ripe for the implementation of hybrid algorithms. Hybrid methods create improved algorithms from existing ones by mixing techniques in a way that maximizes advantages and minimizes disadvantages. Here, we outline a hybrid method for molecular docking which couples the rapid-scanning algorithm DOT with the global optimization algorithm CGU.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Caflisch, A., Niederer, P. and Anliker, M. (1992), “Monte Carlo docking of oligopeptides to proteins,” Proteins Vol. 13, 223–30.

    Article  Google Scholar 

  2. Davis, M.E., Madura, J.D., Luty, B.A. and McCammon, J.A. (1991), “Electrostatics and diffusion of molecules in solution: Simulations with the University of Houston Brownian Dynamics program,” Computer Physics Communications, Vol. 62, 187–97.

    Article  Google Scholar 

  3. Dill, K.A., Phillips, A.T. and Rosen, J.B. (1997), “Protein structure and energy landscape dependence on sequence using a continuous energy function,” Journal of Computational Biology, Vol. 3, No. 4. 227–39.

    Article  Google Scholar 

  4. Dixon, J.S. (1997), “Evaluation of the CASP2 docking section,” Proteins: Structure, Function and Genetics, Vol. 29, No. S1, 198–204.

    Article  Google Scholar 

  5. Elliot, W. D. and Board, J. A. (1994), Fast multipole algorithm for the Lennard-Jones potential, Technical Report 94–005: Department of Electrical Engineering, Duke University.

    Google Scholar 

  6. Fischer, D., Lin, S.L., Wolfson, H.L. and Nussinov, R. (1995), “A geometry-based suite of molecular docking processes,” Journal of Molecular Biology, Vol. 248, No. 2, 459–77.

    Google Scholar 

  7. Friedman, A.R., Roberts, V.A. and Tainer, J.A. (1994), “ Predicting molecular interactions and inducible complementarity: fragment docking of Fab-peptide complexes,” Proteins, Vol. 20, No. 1, 15–24.

    Article  Google Scholar 

  8. Gabb, H.A., Jackson, R.M. and Sternberg, M.J. (1997), “Modeling protein docking using shape complementarity, electrostatics and biochemical information,” Journal of Molecular Biology, Vol. 272, 106–20.

    Article  Google Scholar 

  9. Gill, P.E., Murray, W., Saunders, M.A. and Wright, M.H. (1986), User’s guide for NPSOL (Version 4.0): a Fortran package for nonlinear programming, Technical Report: Department of Operations Research, Stanford University.

    Google Scholar 

  10. Given, J.A. and Gilson, M.K. (1998), “A hierarchical method for generating lowenergy conformers of a protein-ligand complex,” Proteins: Structure, Function and Genetics, Vol. 33, No. 4, 475–95.

    Article  Google Scholar 

  11. Goodsell, D.S. and Olson, A.J. (1990), “Automated Docking of Substrates to Proteins by Simulated Annealing,” Proteins: Structure, Function and Genetics, Vol. 8, No. 3, 195–202.

    Article  Google Scholar 

  12. Gschwend, D.A. and Kuntz, I.D. (1996), “Orientational sampling and rigid-body minimization in molecular docking revisited: on-the-fly optimization and degeneracy removal,” Journal of Computer Aided Molecular Design, Vol. 10, No. 2, 123–32.

    Article  Google Scholar 

  13. Harrison, R.W., Kourinov, I.V. and Andrews, L.C. (1994), “The Fourier-Green’s function and the rapid evaluation of molecular potentials,” Protein Engineering Vol. 7, No. 3, 359–69.

    Article  Google Scholar 

  14. Hart, T.N. and Read, R.J. (1992), “A multiple-start Monte Carlo docking method,” Proteins, Vol. 13, 206–22.

    Article  Google Scholar 

  15. Hart, W.E., Rosin, C., Belew, R.K. and Morris, G.M. (2000), “Improved evolutionary hybrids for flexible ligand docking in AutoDock,” Optimization in Computational Chemistry and Molecular Biology. Floudas, C.A. and Pardalos, P.M., Eds. Kluwer

    Google Scholar 

  16. Honig, B. and Nicholls, A. (1995), “Classical electrostatics in biology and chemistry,” Science, Vol. 268, 1144–9.

    Article  Google Scholar 

  17. Jones, G., Willett, P., Glen, R.C., Leach, A.R. and Taylor, R. (1997), “Development and validation of a genetic algorithm for flexible docking,” Journal of Molecular Biology, Vol. 267, No. 3, 727–48.

    Article  Google Scholar 

  18. Judson, R., Colvin, M., Meza, J., Huffer, A. and Gutierrez, D. (1992), “Do intelligent configuration search techniques outperform random search for large molecules?” International Journal of Quantum Chemistry, Vol.44,No. 2, 277–90.

    Article  Google Scholar 

  19. Katchalski-Katzir, E., Shariv, I., Eisenstein, M., Friesem, A.A., Aflalo, C. and Vakser, I.A. (1992), “Molecular surface recognition: determination of geometric fit between proteins and their ligands by correlation techniques,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 89, No. 6, 2195–9.

    Google Scholar 

  20. Klepeis, J.L., Ierapetritou, M.G. and Floudas, C.A. (1998), “Protein folding and peptide docking: A molecular modeling and global optimization approach,” Computers and Chemical Engineering, Vol. 22, S3-S10.

    Article  Google Scholar 

  21. Mandell, J.G., Roberts, V.A., Pique, M.E., Kotlovyi, V., Nelson, E., Tsigelny, I. and Ten Eyck, L.F. (1999), “Rapid and Comprehensive Protein Docking by Fourier-Domain Methods,” In preparation. Publication information available at http://www.sdsc.edu/CCMS/DOT.

    Google Scholar 

  22. Meng, E.C., Shoichet, B.K., and Kuntz, I.D. (1992), “Automated docking with gridbased energy evaluation,” Journal of Computational Chemistry, Vol. 13, 505–24.

    Article  Google Scholar 

  23. Mitchell, J.C., Phillips, A.T., Rosen, J.B., and Ten Eyck, L.F. (1999), “Coupled optimization in protein docking,” Proceedings of the Third Annual International Conference on Computational Molecular Biology (RECOMB99). ACM Press, New York.

    Google Scholar 

  24. Moré, J. and Wu, Z. (1996), “Smoothing techniques for macromolecular global optimization,” Nonlinear Optimization and Applications. Di Pillo, G. and Giannessi, F., Eds. Plenum Press, New York. pp. 297–312.

    Google Scholar 

  25. Oberlin, D. and Scheraga, H. (1998), “B-spline method for energy minimization in grid-based molecular mechanics simulations,” Journal of Computational Chemistry, Vol. 19, No. 1, 71–85.

    Article  Google Scholar 

  26. Oshiro, C.M., Kuntz, I.D. and Dixon, J.S. (1995), “Flexible ligand docking using a genetic algorithm,” Journal of Computer Aided Molecular Design, Vol. 9, No. 2, 113–30.

    Article  Google Scholar 

  27. Phillips, A.T., Rosen, J.B. and Walke, V.H. (1995), “Molecular structure determination by convex global underestimation of local energy minima,” DIMA CS Series in Discrete Mathematics and Theoretical Computer Science, Vol. 23, Global Minimization of Nonconvex Energy Functions: Molecular Conformation and Protein Folding. Pardalos, P.M., Shalloway, D. and Xue, G., Eds. American Mathematical Society, Providence, RI. pp. 181–98.

    Google Scholar 

  28. Phillips, A.T., Rosen, J.B. and Dill, K.A. (2000), “Energy landscape projections of molecular potential functions,” Optimization in Computational Chemistry and Molecular Biology. Floudas, C.A. and Pardalos, P.M., Eds. Kluwer Academic Publishers B.V.

    Google Scholar 

  29. Rarey, M., Kramer, B., Lengauer, T. and Klebe, G. (1996), “A fast flexible docking method using an incremental construction algorithm,” Journal of Molecular Biology, Vol. 261, No. 3, 470–89.

    Google Scholar 

  30. Rosen, J.B., Phillips, A.T. and Dill, K.A. (1999), “A method for parameter optimization in computational biology,” Preprint available at http://cs.uwec.edu/~phillips.

    Google Scholar 

  31. Shalloway, D. (1992), “Application of the renormalization group to deterministic global minimization of molecular conformation energy functions,” Journal of Global Optimization, Vol. 2, 281–311.

    Article  MathSciNet  MATH  Google Scholar 

  32. Shalloway, D. (1997), “Variable-scale coarse-graining in macromolecular global optimization,” In Large Scale Optimization with Applications to Inverse Problems, Optimal Control and Design, and Molecular and Structural Optimization. Biegler, L.T., Coleman, T.F., Conn, A.R. and Santosa, F.N., Eds. Springer, New York. pp. 135–161

    Chapter  Google Scholar 

  33. Sun, S., Thomas, P.D., and Dill, K.A. (1995), “A simple protein folding algorithm using binary code and secondary structure constraints,” Protein Engineering, Vol. 8, No. 8, 769–778.

    Article  Google Scholar 

  34. Shao, C-S., Byrd, R.H., Eskow, E., and Schnabel, R.B. (1997), “Global optimization for molecular clusters using a new smoothing approach,” IMA Volumes in Mathematics and Its Applications, Vol. 94. Biegler, L.T., Coleman, T.F., Conn, A.R., and Santosa, F.N., Eds. Springer, New York. pp. 163–99.

    Google Scholar 

  35. Ten Eyck, L.F., Mandell, J., Roberts, V.A. and Pique, M.E. (1995), “Surveying molecular interactions with DOT,” Proceedings of the 1995 ACM/IEEE Supercomputing Conference. Hayes, A. and Simmons, M., Eds. ACM Press, New York.

    Google Scholar 

  36. Ten Eyck, L.F., Mandell, J., Kotlovyi, V. and Tsigelny, I. (1999), “Fast Molecular Docking Methods,” Structure and Function of Cholinesterases and Related Proteins. Doctor, B.P., Quinn, D.M., Rotundo, R.L. and Taylor, P. Eds. Plenum Press, New York.

    Google Scholar 

  37. Trosset, J-Y. and Scheraga, H. (1999), “Flexible docking simulations: Scaled collective variable Monte Carlo minimization approach using Bezier splines, and comparison with a standard Monte Carlo algorithm,” Journal of Computational Chemistry, Vol. 20, No. 2, 244–52.

    Article  Google Scholar 

  38. Vakser, I.A. (1995), “Protein docking for low-resolution structures,” Protein Engineering, Vol. 8, No. 4, 371–7.

    Article  Google Scholar 

  39. Vakser, I.A. (1997), “Evaluation of GRAMM low-resolution docking methodology on the hemagglutinin-antibody complex,” Proteins: Structure, Function and Genetics, Vol. 29, No. S1, 226–30.

    Article  Google Scholar 

  40. Vieth, M., Hirst, J.D., Kolinski, A. and Brooks, C.L. III (1999), “Assessing energy functions for flexible docking,” Journal of Computational Chemistry, Vol. 19, No. 14, 1612–22.

    Article  Google Scholar 

  41. Xue, G.L. (1998), “An O(n) time hierarchical tree algorithm for computing force field in N-body simulations,” Theoretical Computer Science, Vol. 197, 157–69.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mitchell, J.C., Phillips, A.T., Ben Rosen, J., Ten Eyck, L.F. (2000). A Coupled Scanning and Optimization Scheme for Analyzing Molecular Interactions. In: Floudas, C.A., Pardalos, P.M. (eds) Optimization in Computational Chemistry and Molecular Biology. Nonconvex Optimization and Its Applications, vol 40. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3218-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3218-4_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4826-7

  • Online ISBN: 978-1-4757-3218-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics