Skip to main content

Central Region Method

  • Chapter
High Performance Optimization

Part of the book series: Applied Optimization ((APOP,volume 33))

Abstract

In this chapter, we discuss a modification of the standard path-following scheme that tends to speed up the global convergence. This modification, the central region method, generates iterates that do not really trace the central path, or at least not closely. In this way, it has a relatively large freedom of movement, and consequently the ability to take long steps. This makes it interesting to consider more sophisticated search directions. We propose a search direction that is built up in three phases, viz.

  1. 1.

    Initial centering,

  2. 2.

    Predictor,

  3. 3.

    Second order centrality corrector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Alizadeh. Interior point methods in semidefinite programming with applications to combinatorial optimization problems. SIAM Journal on Optimization, 5:13–51, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  2. F. Alizadeh, J.A. Haeberly, and M. Overton. A new primal-dual interior point method for semidefinite programming. In J.G. Lewis, editor, Proceedings of the Fifth SIAM Conference on Applied Linear Algebra, pages 113–117. SIAM, Philadelpha, 1994.

    Google Scholar 

  3. F. Alizadeh, J.A. Haeberly, and M. Overton. Primal-dual interior-point methods for semidefinite programming: convergence rates, stability and numerical results. Technical Report 721, Computer Science Department, New York University, New York, 1996.

    Google Scholar 

  4. F. Alizadeh, J.A. Haeberly, and M. Overton. Complementarity and nondegeneracy in semidefinite programming. Mathematical Programming, 77(2):111–128, 1997.

    MathSciNet  MATH  Google Scholar 

  5. E. Anderson and P. Nash. Linear programming in infinite dimensional spaces. John Wiley and Sons, 1987.

    MATH  Google Scholar 

  6. A. Ben-Israel. Linear equations and inequalities on finite dimensional, real or complex, vector spaces: a unified theory. Journal of Mathematical Analysis and Applications, 27:367–389, 1969.

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Ben-Tal and M.P. Bendsoe. A new method for optimal truss topology design. SIAM Journal on Optimization, 3:322–358, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Ben-Tal and A. Nemirovski. Potential reduction polynomial time method for truss topology design. SIAM Journal on Optimization, 4:596–612, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Ben-Tal and A. Nemirovski. Optimal design of engineering structures. Optima, 47:4–9, October 1995.

    Google Scholar 

  10. A.B. Berkelaar, J.F. Sturm, and S. Zhang. Polynomial primaldual cone affine scaling for semidefinite programming. Technical Report 9667/A, Econometric Institute, Erasmus University Rotterdam, Rotterdam, The Netherlands, 1996. To appear in Applied Numerical Mathematics.

    Google Scholar 

  11. A. Berman. Cones, matrices and mathematical programming, volume 73 of Lecture Notes in Economics and Mathematical Systems. Springer-Verlag, Berlin, 1979.

    Google Scholar 

  12. A. Berman and A. Ben-Israel. Linear inequalities, mathematical programming and matrix theory. Mathematical Programming, 1:291–300, 1971.

    Article  MathSciNet  MATH  Google Scholar 

  13. J.M. Borwein. A note on perfect duality and limiting Lagrangians. Mathematical Programming, 18:330–337, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  14. J.M. Borwein. The limiting Lagrangian as a consequence of Helly’s theorem. Journal of Optimization Theory and Applications, 33:497–513, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  15. J.M. Borwein and H. Wolkowicz. Characterizations of optimality for the abstract convex program with finite dimensional range. Journal of the Australian Mathematical Society, 30:390–411, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  16. J.M. Borwein and H. Wolkowicz. Regularizing the abstract convex program. Journal of Mathematical Analysis and Applications, 83:495–530, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  17. S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear matrix inequalities in system and control theory, volume 15 of Studies in Applied Mathematics. SIAM, Philadelphia, PA, 1994.

    Book  Google Scholar 

  18. R.E. Burkard, S.E. Karisch, and F. Rendl. QAPLIB — a quadratic assignment problem library. European Journal of Operational Research, 55:115–119, 1991. Available from http://www.diku.dk/~karisch/qaplib.

    Article  MATH  Google Scholar 

  19. W.B. Carver. Systems of linear inequalities. Annals of Mathematics, 23:212–220, 1921.

    Article  MathSciNet  Google Scholar 

  20. A.R. Conn, N.I.M. Gould, and Ph.L. Toint. LANCELOT: A Fortran package for large-scale nonlinear optimization (release A), volume 17 of Springer Series in Computation Mathematics. Springer-Verlag, Berlin, 1992.

    Google Scholar 

  21. B.D. Craven. Modified Kuhn-Tucker conditions when a minimum is not attained. Operations Research Letters, 3:47–52, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  22. B.D. Craven and J.J. Koliha. Generalizations of Farkas’ theorem. SIAM Journal on Mathematical Analysis, 8:983–997, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  23. J. Cullum, W.E. Donath, and P. Wolfe. The minimization of certain nondifferentiable sums of eigenvalues of symmetric matrices. Mathematical Programming Study, 3:35–55, 1975.

    Article  MathSciNet  Google Scholar 

  24. I.I. Dikin. Iterative solution of problems of linear and quadratic programming. Soviet Mathematics Doklady, 8:674–675, 1967.

    MATH  Google Scholar 

  25. A.S. Drud. CONOPT-A GRG code for large-scale nonlinear optimizationReference manual. Denmark, 1992.

    Google Scholar 

  26. R.J. Duffin. Infinite programs. In H.W. Kuhn and A.W. Tucker, editors, Linear Inequalities and Related Systems, pages 157–170. Princeton University Press, Princeton, NJ, 1956.

    Google Scholar 

  27. A.S. El-Bakry, R.A. Tapia, and Y. Zhang. On the convergence rate of Newton interior point methods in the absence of strict complementarity. Computational Optimization and Applications, 6:157–167, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  28. M. Epelman and R.M. Freund. Condition number complexity of an elementary algorithm for resolving a conic linear system. Technical report, Massachusetts Institute of Technology, Operations Research Center, Cambridge, Massachusetts, USA, 1997.

    Google Scholar 

  29. Ky Fan. On systems of linear inequalities. In H.W. Kuhn and A.W. Tucker, editors, Linear Inequalities and Related Systems, pages 99–156. Princeton University Press, Princeton, NJ, 1956.

    Google Scholar 

  30. J. Farkas. Über die Theorie des einfachen Ungleichungen. Journal für die reine und angewandte Mathematik, 124:1–24, 1902.

    Google Scholar 

  31. K. Glashoff and S. Gustafson. Linear optimization and approximation, volume 45 of Applied Mathematical Sciences. Springer-Verlag, Basel, 1978.

    Google Scholar 

  32. M.X. Goemans and D.P. Williamson. Improved approximation algorithms for maximum cut and satisfyability problems using semidefinite programming. Journal ACM, 42:1115–1145, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  33. D. Goldfarb and K. Scheinberg. Interior point trajectories in semidefinite programming. Technical report, Columbia University, Department of IEOR, New York, USA, 1996.

    Google Scholar 

  34. A.J. Goldman and A.W. Tucker. Polyhedral convex cones. In H.W. Kuhn and A.W. Tucker, editors, Linear Inequalities and Related Systems, pages 19–40. Princeton University Press, Princeton, NJ, 1956.

    Google Scholar 

  35. A.J. Goldman and A.W. Tucker. Theory of linear programming. In H.W. Kuhn and A.W. Tucker, editors, Linear Inequalities and Related Systems, pages 53–98. Princeton University Press, Princeton, NJ, 1956.

    Google Scholar 

  36. C.C. Gonzaga. Polynomial affine algorithms for linear programming. Mathematical Programming, 49:7–21, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  37. C.C. Gonzaga. Interior path following algorithms. In J.R. Birge and K.G. Murty, editors, Mathematical Programming, State of the Art 1994, pages 93–101, Ann Arbor, 1994. University of Michigan.

    Google Scholar 

  38. C.C. Gonzaga. The largest step path following algorithm for monotone linear complementarity problems. Mathematical Programming, 76:309–332, 1997.

    MathSciNet  MATH  Google Scholar 

  39. C.C. Gonzaga and R.A. Tapia. On the quadratic convergence of the simplified Mizuno-Todd-Ye algorithm for linear programming. SIAM Journal on Optimization, 7(1):66–85, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  40. P. Gordan. Über die Auflösungen linearer Gleichungen mit reelen Coefficienten. Mathematische Annalen, 6:23–28, 1873.

    Article  MathSciNet  MATH  Google Scholar 

  41. M. Grötschel, L. Lovász, and A. Schrijver. Geometric algorithms and combinatorial optimization, volume 2 of Algorithms and Combinatorics. Springer-Verlag, New York, Berlin, 1988.

    Book  Google Scholar 

  42. O. Güler. Limiting behavior of weighted central paths in linear programming. Mathematical Programming, 65:347–363, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  43. O. Güler and Y. Ye. Convergence behavior of interior-point algorithms. Mathematical Programming, 60:215–228, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  44. C. Helmberg, F. Rendl, R.J. Vanderbei, and H. Wolkowicz. An interior-point method for semidefinite programming. SIAM Journal on Optimization, 6:342–361, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  45. N.J. Higham. Accuracy and stability of numerical algorithms. SIAM, Philadelphia, 1996.

    MATH  Google Scholar 

  46. A.J. Hoffman. On approximate solutions of systems of linear inequalities. Journal of Research of the National Bureau of Standards, 49:263–265, 1952.

    Article  MathSciNet  Google Scholar 

  47. R.A. Horn and C.R. Johnson. Matrix analysis. Cambridge University Press, Cambridge, New York, 1985. Corrected reprint 1990.

    Book  MATH  Google Scholar 

  48. J.E. Ingersoll. Theory of financial decision making. Rowman & Littlefield, Totowa, NJ, 1987.

    Google Scholar 

  49. B. Jansen. Interior point techniques in optimization. Complexity, sensitivity and algorithms. PhD thesis, Faculty of Mathematics and Computer Science, Technical University Delft, Delft, The Netherlands, December 1995. To be published by Kluwer.

    Google Scholar 

  50. B. Jansen, C. Roos, and T. Terlaky. The theory of linear programming: skew symmetric self-dual problems and the central path. Optimization, 29:225–233, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  51. B. Jansen, C. Roos, and T. Terlaky. A polynomial Dikin-type primal-dual algorithm for linear programming. Mathematics of Operations Research, 21:341–353, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  52. B. Jansen, C. Roos, T. Terlaky, and J.-Ph. Vial. Primal-dual target following algorithms for linear programming. Annals of Operations Research, 62:197–231, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  53. F. Jarre. An interior-point method for minimizing the maximum eigenvalue of a linear combination of matrices. SIAM Journal on Control and Optimization, 31:1360–1377, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  54. R.G. Jeroslow. A limiting Lagrangian for infinitely convex optimization in Rn . Journal of Optimization Theory and Applications, 33:479–495, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  55. N.K. Karmarkar. A new polynomial time algorithm for linear programming. Combinatorica, 4:373–395, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  56. D.F Kamey. Duality gaps in semi-infinite linear porgramming — an approximation problem. Mathematical Programming, 20:129–143, 1981.

    Article  MathSciNet  Google Scholar 

  57. D.F. Karney and T.D. Morley. Limiting Lagrangians: a primal approach. Journal of Optimization Theory and Applications, 48:163–174, 1986.

    MathSciNet  MATH  Google Scholar 

  58. W.K. Klein Haneveld. Enkele stochastische optimaliseringsproblemen en hun dualen. Lecture notes of LNMB course, Department of Econometrics, University of Groningen, 1994. In Dutch.

    Google Scholar 

  59. E. de Klerk, C. Roos, and T. Terlaky. A nonconvex weighted potential function for polynomial target following methods. Technical Report 95–127, Delft University of Technology, Faculty of Technical Mathematics and Informatics, Delft, The Netherlands, 1995.

    Google Scholar 

  60. E. de Klerk, C. Roos, and T. Terlaky. Initialization in semidefinite programming via a self-dual skew-symmetric embedding. Technical Report 96–10, Delft University of Technology, Faculty of Technical Mathematics and Informatics, Delft, The Netherlands, 1996.

    Google Scholar 

  61. E. de Klerk, C. Roos, and T. Terlaky. Polynomial primal-dual affine scaling algorithms in semidefinite programming. Technical Report 96–42, Delft University of Technology, Faculty of Technical Mathematics and Informatics, Delft, The Netherlands, 1996.

    Google Scholar 

  62. E. de Klerk, C. Roos, and T. Terlaky. Infeasible start semidefinite programming algorithms via self-dual embeddings. Technical Report 97–10, Delft University of Technology, Faculty of Technical Mathematics and Informatics, Delft, The Netherlands, 1997.

    Google Scholar 

  63. M. Kojima, N. Megiddo, T. Noma, and A. Yoshise. A Unified Approach to Interior Point Algorithms for Linear Complementarity Problems. Springer-Verlag, Berlin, 1991.

    Book  Google Scholar 

  64. M. Kojima, S. Mizuno, and A. Yoshise. A polynomial-time algorithm for a class of linear complementarity problems. Mathematical Programming, 44:1–26, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  65. M. Kojima, S. Mizuno, and A. Yoshise. A primal-dual interior point algorithm for linear programming. In N. Megiddo, editor, Progress in mathematical programming: interior point and related methods, pages 29–37. Springer-Verlag, New York, 1989.

    Chapter  Google Scholar 

  66. M. Kojima, M. Shida, and S. Shindoh. Local convergence of predictor-corrector infeasible-interior-point algorithms for SDPs and SDLCPs. Technical Report B-306, Dept. of Information Sciences, Tokyo Institute of Technology, 2–12–1 Oh-Okayama, Meguro-ku, Tokyo 152, Japan, 1995.

    Google Scholar 

  67. M. Kojima, M. Shida, and S. Shindoh. A note on the Nesterov-Todd and the Kojima-Shindoh-Hara search directions in semidef-inite programming. Technical Report B-313, Dept. of Information Sciences, Tokyo Institute of Technology, 2–12–1 Oh-Okayama, Meguro-ku, Tokyo 152, Japan, 1996.

    Google Scholar 

  68. M. Kojima, M. Shida, and S. Shindoh. A predictor-corrector interior-point algorithm for the semidefinite linear complementarity problem using the alizadeh-haeberly-overton search direction. Technical Report B-311, Dept. of Information Sciences, Tokyo Institute of Technology, 2–12–1 Oh-Okayama, Meguro-ku, Tokyo 152, Japan, 1996.

    Google Scholar 

  69. M. Kojima, M. Shida, and S. Shindoh. Search directions in the SDP and the monotone SDLCP: Generalization and inexact computation. Technical Report B-327, Dept. of Information Sciences, Tokyo Institute of Technology, 2–12–1 Oh-Okayama, Meguro-ku, Tokyo 152, Japan, 1997.

    Google Scholar 

  70. M. Kojima, S. Shindoh, and S. Hara. Interior-point methods for the monotone semidefinite linear complementarity problem in symmetric matrices. SIAM Journal on Optimization, 7(1):86–125, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  71. S.Y. Kung, C.K. Lo, and R. Foka. A Toeplitz approximation approach to coherent source direction finding. In International Conference on ASSP, Tokyo, 1986.

    Google Scholar 

  72. C.J. Lin and R. Saigal. An infeasible start predictor corrector method for semi-definite linear programming. Technical report, Department of Industrial and Operations Engineering, The University of Michigan, Ann Arbor, USA, 1995.

    Google Scholar 

  73. Lovász. On the Shannon capacity of a graph. IEEE Transactions on Information Theory, 25:1–7, 1979.

    Article  MATH  Google Scholar 

  74. Z.-Q. Luo. private communication, 1996.

    Google Scholar 

  75. Z.-Q. Luo, J.F. Sturm, and S. Zhang. Duality and self-duality for conic convex programming. Technical Report 9620/A, Econometric Institute, Erasmus University Rotterdam, Rotterdam, The Netherlands, 1996.

    Google Scholar 

  76. Z.-Q. Luo, J.F. Sturm, and S. Zhang. Duality results for conic convex programming. Technical Report 9719/A, Econometric Institute, Erasmus University Rotterdam, Rotterdam, The Netherlands, 1997.

    Google Scholar 

  77. Z.-Q. Luo, J.F. Sturm, and S. Zhang. Superlinear convergence of a symmetric primal-dual path following algorithm for semidefinite programming. SIAM Journal on Optimization, 8(1):59–81, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  78. I.J. Lustig, R.E. Marsten, and D.F. Shanno. Computational experience with a primal-dual interior point method for linear programming. Linear Algebra and its Applications, 152:191–222, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  79. I.J. Lustig, R.E. Marsten, and D.F. Shanno. On implementing Mehrotra’s predictor-corrector interior point method for linear programming. SIAM Journal on Optimization, 2:435–449, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  80. N. Megiddo. Pathways to the optimal solution set in linear programming. In N. Megiddo, editor, Interior-Point and Related Methods, Progress in Mathematical Programming, pages 131–158. Springer-Verlag, New York, 1989.

    Chapter  Google Scholar 

  81. S. Mehrotra. On the implementation of a primal-dual interior point method. SIAM Journal on Optimization, 2:575–601, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  82. B. Mirkin. Approximation clustering: a mine of semidefinite programming problems. Presented during the workshop on semidefinite programming and interior-point approaches for combinatorial optimization problems in Toronto, May 15–17 1996.

    Google Scholar 

  83. S. Mizuno. A new polynomial time method for a linear complementarity problem. Mathematical Programming, 56(1):31–43, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  84. S. Mizuno. A superlinearly convergent infeasible-interior-point algorithm for geometical LCPs without a strictly complementarity condition. Mathematics of Operations Research, 2:382–400, 1996.

    Article  MathSciNet  Google Scholar 

  85. S. Mizuno, M.J. Todd, and Y. Ye. On adaptive-step primal-dual interior-point algorithms for linear programming. Mathematics of Operations Research, 18:964–981, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  86. R.D.C. Monteiro. Polynomial convergence of primal-dual algorithms for semidefinite programming based on Monteiro and Zhang family of directions. Technical report, School of Industrial and Systems Engineering, Georgia Tech, Atlanta, Georgia, U.S.A., 1996.

    Google Scholar 

  87. R.D.C. Monteiro. Primal-dual path following algorithms for semidefinite programming. SIAM Journal on Optimization, 7(3): 663–678, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  88. R.D.C. Monteiro and I. Adler. Interior path following primal-dual algorithms. part 1: linear programming. Mathematical Programming, 44:27–41, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  89. R.D.C Monteiro, I. Adler, and M.G.C. Resende. A polynomial-time primal-dual affine scaling algorithm for linear and convex quadratic programming and its power series extension. Mathematics of Operations Research, 15:191–214, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  90. R.D.C. Monteiro and J.-S. Pang. On two interior point mappings for nonlinear semidefinite complementarity problems. Mathematics of Operations Research, 23:39–60, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  91. R.D.C. Monteiro and T. Tsuchiya. Limiting behavior of the derivatives of certain trajectories associated with a monotone horizontal linear complementarity problem. Mathematics of Operations Research, 21(4):793–814, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  92. R.D.C. Monteiro and T. Tsuchiya. Polynomial convergence of a new family of primal-dual algorithms for semidefinite programming. Technical report, School of Industrial and Systems Engineering, Georgia Tech, Atlanta, Georgia, U.S.A., 1996.

    Google Scholar 

  93. R.D.C. Monteiro and S. Wright. Local convergence of interior-point algorithms for degenerate monotone LCP. Computational Optimization and Applications, 3:131–155, 1993.

    Article  MathSciNet  Google Scholar 

  94. R.D.C. Monteiro and P.R. Zanjácomo. A note on the existence of the Alizadeh-Haeberly-Overton direction for semidefinite programming. Technical report, School of Industrial and Systems Engineering, Georgia Tech, Atlanta, Georgia, U.S.A., 1996. Revised January, 1997.

    Google Scholar 

  95. R.D.C. Monteiro and Y. Zhang. A unified analysis for a class of path-following primal-dual interior point algorithms for semidefinite programming. Mathematical Programming, 81:281–299, 1998.

    MathSciNet  MATH  Google Scholar 

  96. M. Muramatsu. Affine scaling algorithm fails for semidefinite programming. Technical Report 16, Department of Mechanical Engineering, Sophia University, Japan, 1996.

    Google Scholar 

  97. M. Muramatsu and R.J. Vanderbei. Primal-dual affine scaling fails for semidefinite programming. Technical report, Department of Mechanical Engineering, Sophia University, Japan, 1997.

    Google Scholar 

  98. W. Murray. Algorithms for large nonlinear problems. In J.R. Birge and K.G. Murty, editors, Mathematical Programming, State of the Art 1994, pages 172–185, Ann Arbor, 1994. University of Michigan.

    Google Scholar 

  99. B.A. Murtagh and M.A. Saunders. MINOS 5.4 user’s guide. Technical Report SOL 93–20R, Department of Operations Research, Stanford University, Stanford, USA, 1993.

    Google Scholar 

  100. Y. Nesterov and A. Nemirovski. Interior point polynomial methods in convex programming, volume 13 of Studies in Applied Mathematics. SIAM, Philadelphia, 1994.

    Book  Google Scholar 

  101. Y. Nesterov and M.J. Todd. Self-scaled barriers and interior-point methods for convex programming. Mathematics of Operations Research, 22(1):1–42, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  102. Y. Nesterov and M.J. Todd. Primal-dual interior-point methods for self-scaled cones. SIAM Journal on Optimization, 8:324–364, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  103. Y. Nesterov, M.J. Todd, and Y. Ye. Infeasible-start primal-dual methods and infeasibility detectors for nonlinear programming problems. Technical Report 1156, School of Operations Research and Industrial Engineering, Cornell University, Ithaca, New York, 1996.

    Google Scholar 

  104. J.A. Olkin. Using semidefinite programming for controller design in active noise control. SIAG/OPT Views-and-News, 8:1–5, Fall 1996.

    Google Scholar 

  105. J.A. Olkin and P.J. Titterton. Using semi-definite programming for H 2 controller design with multiple simultaneous H 2 constraints. Journal of VLSI Signal Processing, 14, 1996.

    Google Scholar 

  106. M.L. Overton. Large scale optimization of eigenvalues. SIAM Journal on Optimization, 2:88–120, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  107. M.L. Overton and R.S. Womersley. Optimality conditions and duality theory for minimizing sums of the largest eigenvalues of symmetric matrices. Mathematical Programming, 62:321–357, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  108. P. Pardalos. On the passage from local to global in optimization. In J.R. Birge and K.G. Murty, editors, Mathematical Programming, State of the Art 1994, pages 220–247, Ann Arbor, 1994. University of Michigan.

    Google Scholar 

  109. F.A. Potra and R. Sheng. Homogeneous interior-point algorithms for semidefinite programming. Technical report, Department of Mathematics, University of IOWA, Iowa City, IA, USA, 1995.

    Google Scholar 

  110. F.A. Potra and R. Sheng. A superlinearly convergent primal-dual infeasible-interior-point algorithm for semidefinite programming. Technical Report 78, Department of Mathematics, The University of Iowa, Iowa City, USA, 1995.

    Google Scholar 

  111. F.A. Potra and R. Sheng. Superlinear convergence of a predictor-corrector method for semidefinite programming without shrinking central path neighborhood. Technical Report 91, Department of Mathematics, The University of Iowa, Iowa City, USA, 1996.

    Google Scholar 

  112. F.A. Potra and R. Sheng. Superlinear convergence of interior point algorithms for semidefinite programming. Technical Report 86, Department of Mathematics, The University of Iowa, Iowa City, USA, 1996.

    Google Scholar 

  113. M.V. Ramana. An exact duality theory for semidefinite programming and its complexity implications. Mathematical Programming, 77(2):129–162, 1997.

    MathSciNet  MATH  Google Scholar 

  114. M.V. Ramana and R. Freund. One the ELSD duality theory for SDP. Technical report, Center of Applied Optimization, University of Florida, Gainesville, Florida, USA, 1996.

    Google Scholar 

  115. M.V. Ramana and P.M. Pardalos. Semidefinite programming. In T. Terlaky, editor, Interior point methods of mathematical programming, volume 5 of Applied Optimization, chapter 9, pages 369–398. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996. Series editors P.M. Pardalos and D. Hearn.

    Chapter  Google Scholar 

  116. M.V. Ramana, L. Tunçel, and H. Wolkowicz. Strong duality for semidefinite programming. SIAM Journal on Optimization, 7:641–662, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  117. F. Rendl and H. Wolkowicz. A projection technique for partitioning the nodes of a graph. Technical Report 90–20, Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario, Canada, 1990.

    Google Scholar 

  118. J. Renegar. A polynomial time algorithm, based on Newton’s method, for linear programming. Mathematical Programming, 40:59–93, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  119. J. Renegar. Some perturbation theory for linear programming. Mathematical Programming, 65(1):73–91, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  120. J. Renegar. Linear programming, complexity theory, and elementary functional analysis. Mathematical Programming, 70(3):279–351, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  121. R.T. Rockafellar. Convex Analysis. Princeton University Press, Princeton, NJ, 1970.

    MATH  Google Scholar 

  122. C. Roos, T. Terlaky, and J.-Ph. Vial. Theory and algorithms for linear optimization. An interior point approach. Series in discrete mathematics and optimization. John Wiley & Sons, New York, 1997.

    Google Scholar 

  123. C. Scherer, P. Gahinet, and M. Chilali. Multi-objective output-feedback control via LMI optimization. Technical report, Mechanical Engineering Systems and Control Group, Delft University of Technology, Delft, The Netherlands, 1995.

    Google Scholar 

  124. A. Shapiro and J.D. Botha. Dual algorithms for orthogonal Procrustes rotations. SIAM Journal on Matrix Analysis and Applications, 9:378–383, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  125. M. Shida, S. Shindoh, and M. Kojima. Existence and uniqueness of search directions in interior-point algorithms for the SDP and the monotone SDLCP. SIAM Journal on Optimization, 8(2):387–396, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  126. E. Stiemke. Über positiven Lösungen homogener linearer Gleichungen. Mathematische Annalen, 76:340–342, 1915.

    Article  MathSciNet  MATH  Google Scholar 

  127. J.F. Sturm. Superlinear convergence of an algorithm for monotone linear complementarity problems, when no strictly complementary solution exists. Mathematics of Operations Research, 24:72–94, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  128. J.F. Sturm and S. Zhang. On weighted centers for semidefinite programming. Technical Report 9636/A, Econometric Institute, Erasmus University Rotterdam, Rotterdam, The Netherlands, 1996. To appear in European Journal of Operational Research.

    Google Scholar 

  129. J.F. Sturm and S. Zhang. An O \( O\left( {\sqrt n L} \right) \) iteration bound primal-dual cone affine scaling algorithm for linear programming. Mathematical Programming, 72:177–194, 1996.

    MathSciNet  MATH  Google Scholar 

  130. J.F. Sturm and S. Zhang. On a wide region of centers and primal-dual interior point algorithms for linear programming. Mathematics of Operations Research, 22(2):408–431, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  131. J.F. Sturm and S. Zhang. On the long step path-following method for semidefinite programming. Operations Research Letters, 22:145–150, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  132. J.F. Sturm and S. Zhang. Symmetric primal-dual path following algorithms for semidefinite programming. Applied Numerical Mathematics, 29:301–315, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  133. T. Terlaky. On p programming. European Journal of Operational Research, 22:70–10, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  134. M.J. Todd, K.C. Toh, and R.H. Tütüncü. On the Nesterov-Todd direction in semidefinite programming. SIAM Journal on Optimization, 8(3):769–796, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  135. M.J. Todd and Y. Ye. A centered projective algorithm for linear programming. Mathematics of Operations Research, 15:508–529, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  136. M.J. Todd and Y. Ye. Approximate Farkas lemmas and stopping rules for iterative infeasible-point algorithms for linear programming. Mathematical Programming, 81:1–21, 1998.

    MathSciNet  MATH  Google Scholar 

  137. P. Tseng. Search directions and convergence analysis of some semidefinite path-following methods for the monotone semi-definite LCP. Technical report, Department of Mathematics, University of Washington, Seattle, Washington, USA, 1996.

    Google Scholar 

  138. A.W. Tucker. Dual systems of homogeneous linear relations. In H.W. Kuhn and A.W. Tucker, editors, Linear Inequalities and Related Systems, pages 3–18. Princeton University Press, Princeton, NJ, 1956.

    Google Scholar 

  139. M. Ujvári. Simple proofs of duality theorems in semidefinite and cone linear programming. Technical report, Department of Operations Research, Eötvös Lorànd University, Budapest, Hungary, 1996.

    Google Scholar 

  140. L. Vandenberghe and S. Boyd. A primal-dual potential reduction method for problems involving matrix inequalities. Mathematical Programming, 69:205–236, 1995.

    MathSciNet  MATH  Google Scholar 

  141. L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Review, 38:49–95, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  142. L. Vandenberghe, S. Boyd, and S.-P. Wu. Determinant maximization with linear matrix inequality constraints. Technical report, Information Systems Laboratory, Electrical Engineering Department, Stanford University, Stanford, USA, April 1996.

    Google Scholar 

  143. H. Wolkowicz. Some applications of optimization in matrix theory. Linear Algebra and its Applications, 40:101–118, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  144. Y. Ye and K. Anstreicher. On quadratic and O\( O\left( {\sqrt n L} \right) \) convergence of a predictor-corrector algorithm for LCP. Mathematical Programming, 62:537–551, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  145. Y. Ye, M.J. Todd, and S. Mizuno. An O \( O\left( {\sqrt n L} \right) \) -iteration homogeneous and self-dual linear programming algorithm. Mathematics of Operations Research, 19:53–67, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  146. Y. Zhang. On extending some primal-dual interior-point algorithms from linear programming to semidefinite programming. SIAM Journal on Optimization, 8(2):365–386, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  147. Y. Zhang and D. Zhang. On polynomiality of the Mehrotra-type predictor-corrector interior-point algorithms. Mathematical Programming, 68:303–318, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  148. Q. Zhao, S.E. Karisch, F. Rendl, and H. Wolkowicz. Semidefinite programming relaxations for the quadratic assignment problem. Technical Report 95–27, University of Waterloo, Waterloo, Canada, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Frenk, H., Roos, K., Terlaky, T., Zhang, S. (2000). Central Region Method. In: Frenk, H., Roos, K., Terlaky, T., Zhang, S. (eds) High Performance Optimization. Applied Optimization, vol 33. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3216-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3216-0_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4819-9

  • Online ISBN: 978-1-4757-3216-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics