Boundedness of Pseudo-Differential Operators on Hörmander Spaces

  • G. M. Iancu
Part of the International Society for Analysis, Applications and Computation book series (ISAA, volume 5)


We prove the boundedness of a class of pseudo-differential operators on the Hörmander spaces \({\dot H^{0,p}},1 < p < \infty .\) Examples are given to show that the classical pseudo-differential operators fail to be bounded on these spaces. Fourier integral operators and their global mapping properties are studied in this setting. Applications to the regularity of solutions of semilinear pseudo-differential equations on ℝn are presented.


Asymptotic Expansion Bounded Linear Operator Besov Space Pseudodifferential Operator Schwartz Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Beals, M. (1979). LP and Hölder estimates for pseudodifferential operators: Necessary conditions, Harmonic analysis in Euclidean spaces, Proc. Symp. Pure Math., Vol. 35(II), Providence, Amer. Math. Soc., (pages 153 - 157 ).CrossRefGoogle Scholar
  2. [2]
    Beals, M. (1982). LP boundedness of Fourier integral operators, Mem. Amer. Math. Soc., Vol. 38 (264).Google Scholar
  3. [3]
    Beals, M. (1989). Propagation and Interaction of Singularities in Nonlinear Hiperbolic Problems, Birkhauser.Google Scholar
  4. [4]
    Cordes, H. O. (1995). The Technique of Pseudodifferential Operators, Cam¬bridge University Press.zbMATHGoogle Scholar
  5. [5]
    Hörmander, L. (1983). The Analysis of Linear Partial Differential Operators II, Springer-Verlag.Google Scholar
  6. [6]
    L. Hörmander, L. (1983/83). The Analysis of Linear Partial Differential Operators IV, Springer-Verlag.Google Scholar
  7. [7]
    Pi, L. and M.W. Wong. (1992). On a generalization of Schauders theorem, in Proceedings of (international Conference on Nonlinear Partial Differen¬tial Equations, Zhejang University, R.P. China, June 1992, (eds. G. Dong and F. Lin), International Academic Press, ( 1993 ), (pages 222 - 232 ).Google Scholar
  8. [8]
    Qing-jiu, Q. (1985). The Besov space boundedness for certain Fourier inte¬gral operators, Acta Math. Scientia, Vol. 5, (pages 167 - 174 ).Google Scholar
  9. [9]
    Q. Qing-jiu, Q. (1986). On LP-estimates for certain Fourier integral opera¬tors, Scientia Sinica, Ser. A, Vol. 29, (pages 350 - 362 ).Google Scholar
  10. 10] Treves, F. (1980). Introduction to Pseudodifferential and Fourier Integral Operators II, Plenum Press.Google Scholar
  11. [11]
    Zaidman, S. (1970). Certaines classes dperateurs pseudo-differentiels, J. Math. Anal. Appl., Vol. 30, (pages 522 - 563 ).MathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    Zaidman, S. (1972). Pseudo-differential operators, Ann. Mat. Pura. Appl., Vol. 92, (pages 345 - 399 ).MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • G. M. Iancu
    • 1
  1. 1.Department of Mathematics and StatisticsYork UniversityNorth YorkCanada

Personalised recommendations