Advertisement

Variations on (X,ψ) Duality

  • Robert Carroll
Part of the International Society for Analysis, Applications and Computation book series (ISAA, volume 5)

Abstract

We sketch some possible extensions of the (X, ψ) duality ideas of Faraggi-Matone [15, 16] in two directions. First one looks at a formulation in terms of Baker-Akhiezer (BA) functions of integrable systems and secondly we sketch some of the Olavo theory of [25] in order to indicate possible connections.

Keywords

Liouville Equation Duality Idea Hamilton Jacobi Hamilton Jacobi Theory Legendre Duality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bonelli, G. and M. Matone, (1996). Phys. Rev. Lett., Vol. 76, (pages 41074110 ).Google Scholar
  2. [2]
    Carroll, R. (1997). hep-th 9705229, Nucl. Phys. B, Vol. 502, to appear.Google Scholar
  3. [3]
    Carroll, R. hep-th 9607219, 9610216, and 9702138.Google Scholar
  4. [4]
    Carroll, R. and Y. Kodama, (1995). Jour. Phys. A, Vol. 28, (pages 63736387).Google Scholar
  5. [5]
    Carroll, R. (1994). Jour. Nonlin. Sci., Vol. 4, (pages 519–544); Teor. Mat. Fizika, Vol. 99, (1994), (pages 220–225 ).Google Scholar
  6. [6]
    Carroll, R. (1995). Proc. NEEDS’94, World Scientific, (pages 24–33 ).Google Scholar
  7. [7]
    Carroll, R. (1993/1995). Applicable Anal., Vol. 49, (1993), (pages 1–31); Vol. 56, (1995), (pages 147–164 ).zbMATHGoogle Scholar
  8. [8]
    Carroll, R. (1991). Topics in soliton theory, North-Holland.Google Scholar
  9. [9]
    Carroll, R. and J.H. Chang, (1997). Applicable Anal., Vol. 64, (pages 343378 ).Google Scholar
  10. [10]
    Carroll, R. (1996). Repts. Math. Phys., Vol. 37, (pages 1–21 ).zbMATHCrossRefGoogle Scholar
  11. [11]
    Carroll, R. Proc. Conf. Supersymmetry and integrable models, UIC, June, 1997, Springer, to appear.Google Scholar
  12. [12]
    Carroll, R. In preparation.Google Scholar
  13. [13]
    Chang, J.H. Thesis, Univ. of Illinois, In preparation.Google Scholar
  14. [14]
    Cohen, L. (1966). Jour. Math. Phys., Vol. 7, (pages 781–786 ).CrossRefGoogle Scholar
  15. [15]
    Faraggi, A. and M. Matone, (1997). Phys. Rev. Lett., Vol. 78, (pages 163166 ).Google Scholar
  16. [16]
    Faraggi, A. and M. Matone. hep-th 9705108.Google Scholar
  17. [17]
    Floyd, E. quant-ph 9707051.Google Scholar
  18. [18]
    Guha, P. and K. Takasaki, solv-int 9705013.Google Scholar
  19. [19]
    Holland, P. (1993). The quantum theory of motion, Cambridge Univ. Press.Google Scholar
  20. [20]
    Kodama, Y. and J. Gibbons, (1990). Workshop on nonlinear and turbulent processes in physics, World Scientific, (pages 166–180 ).Google Scholar
  21. [21]
    Matsukidaira, J., J. Satsuma, and W. Strampp, (1990). Jour. Math. PHys., Vol. 31, (pages 1426–1434 ).MathSciNetzbMATHCrossRefGoogle Scholar
  22. [22]
    Messiah, A. (1995). Quantum mechanics, Vol. 1, North-Holland.Google Scholar
  23. [23]
    Nakatsu, T. and K. Takasaki, (1996). Mod. Phys. Lett. A, Vol. 11, (pages 157–168 ).MathSciNetzbMATHGoogle Scholar
  24. [24]
    Ohta, Y., J. Satsuma, D. Takahashi, and T. Tokihiro, (1988). Prog. Theor. Phys., Supp. 94, (pages 210–244 ).MathSciNetCrossRefGoogle Scholar
  25. [25]
    Olavo, L. quant-ph 9503020,9503021,9503022,9503024,9503025,9509012, 9509013, 9511028, 9511039, 9601002, 9607002, 9607003, 9609003, 9609023, 9703006, 9704004.Google Scholar
  26. [26]
    Reif, F. (1965). Fundamentals of statistical and thermal physics, McGraw-Hill.Google Scholar
  27. [27]
    Seiberg, N. and E. Witten, (1994). Nucl. Phys. B, Vol. 426, (pages 19–52); Vol. 431, (pages 484–550 ).MathSciNetzbMATHCrossRefGoogle Scholar
  28. [28]
    Takasaki, K. and T. Takebe, (1992/1995). Inter. Jour. Mod. Phys. A, Supp. 1992, (pages 889–922); Rev. Math. Phys., Vol. 7, (1995), (pages 743–808 ).MathSciNetzbMATHGoogle Scholar
  29. [29]
    Tegmark, M. quant-ph 9709032.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • Robert Carroll
    • 1
  1. 1.Mathematics DepartmentUniversity of IllinoisUrbanaUSA

Personalised recommendations