Skip to main content

Solution of the Robin and Dirichlet Problem for the Laplace Equation

  • Chapter
Direct and Inverse Problems of Mathematical Physics

Part of the book series: International Society for Analysis, Applications and Computation ((ISAA,volume 5))

  • 820 Accesses

Abstract

Suppose that GR m (m ≥ 2) is an open set with a non-void compact boundary ∂G such that ∂G = (cl G), where cl G is the closure of G. Fix a nonnegative element λ of C′(∂G) (=the Banach space of all finite signed Borel measures with support in ∂G with the total variation as a norm) and suppose that the single layer potential uλ is bounded and continuous on ∂G. (In R 2 it means that λ = 0. If GR m, (m > 2), ∂G is locally Lipschitz, λ = fℋ, ℋ is the surface measure on the boundary of G, f is a nonnegative bounded measurable function, then uλ is bounded and continuous.)Here

$$\mu \nu (x)\, = \,\int\limits_{{R^m}} {{h_x}(y)\,d\nu (y)} ,$$

where ν ∈ C’(∂G),

$${h_x}(y)\, = \,\left\{ {\begin{array}{*{20}{c}} {{{(m - 2)}^{ - 1}}{A^{ - 1}}{{\left| {x - y} \right|}^{2 - m}},\,m > 2,} \\ {{A^{ - 1}}\log {{\left| {x - y} \right|}^{ - 1}},m = 2,} \end{array}} \right.$$

A is the area of the unit sphere in Rm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angell, T. S., R. E. Kleinman, and J. Kral. (1988). Layer potentials on boundaries with corners and edges, Cas. pest. mat., Vol. 113, (pages 387402).

    Google Scholar 

  2. Yu., D. Burago, V. G. Mazya. (1969). Potential theory and function theory for irregular regions, Seminars in mathematics V. A. Steklov Mathematical Institute, Leningrad.

    Google Scholar 

  3. Grachev, N. V. and V. G. Maz’ya. (1986). On the Fredholm radius for operators of the double layer potential type on piecewise smooth boundaries, Vest. Leningrad. Univ., Vol. 19(4), (pages 60–64).

    Google Scholar 

  4. Grachev, N. V. and V. G. Maz’ya. Estimates for kernels of the inverse operators of the integral equations of elasticity on surfaces with conic points, Report LiTH-MAT-R-91–06, Linköping Univ., Sweden.

    Google Scholar 

  5. Grachev, N. V. and V. G. Maz’ya. Invertibility of boundary integral operators of elasticity on surfaces with conic points, Report LiTH-MAT-R-91–07, Linköping Univ., Sweden.

    Google Scholar 

  6. Grachev, N. V. and V. G. Maz’ya. Solvability of a boundary integral equation on a polyhedron, Report LiTH-MAT-R-91–50, Linköping Univ., Sweden.

    Google Scholar 

  7. Chlebfk, M. (1988). Tricomi potentials, Thesis, Mathematical Institute of the Czechoslovak Academy of Sciences Praha (in Slovak).

    Google Scholar 

  8. Kral, J. (1964). On double-layer potential in multidimensional space, Dokl. Akad. Nauk SSSR, Vol. 159.

    Google Scholar 

  9. Kral, J. (1980). Integral Operators in Potential Theory, Lecture Notes in Mathematics 823, Springer-Verlag, Berlin.

    Google Scholar 

  10. Kral, J. (1966). The Fredholm method in potential theory, Trans. Amer. Math. Soc., Vol. 125, (pages 511–547 ).

    Google Scholar 

  11. Kral, J. and I. Netuka. (1977). Contractivity of C. Neumann’s operator in potential theory, Journal of the Mathematical Analysis and its Applications, Vol. 61, (pages 607–619 ).

    Google Scholar 

  12. Kral, J. and W. L. Wendland. (1986). Some examples concerning applicability of the Fredholm-Radon method in potential theory, Aplikace Matematiky, Vol. 31, (pages 239–308 ).

    Google Scholar 

  13. Kress, R. and G. F. Roach. (1976). On the convergence of successive approximations for an integral equation in a Green’s function approach to the Dirichlet problem, Journal of Mathematical Analysis and Applications, Vol. 55, (pages 102–111 ).

    Google Scholar 

  14. Maz’ya, V. G. (1988). Boundary integral equations, Sovremennyje problemy matematiki, fundamental’nyje napravlenija, Vol. 27, Viniti, Moskva (Russian).

    Google Scholar 

  15. Maz’ya, V. and A. Solov’ev. (1993). On the boundary integral equation of the Neumann problem in a domain with a peak, Amer. Math. Soc. Transi., Vol. 155, (pages 101–127 ).

    Google Scholar 

  16. Medkova, D. (in print). The third boundary value problem in potential theory for domains with a piecewise smooth boundary, Czech. Math. J..

    Google Scholar 

  17. Medkova, D. (in print). Solution of the Neumann problem for the Laplace equation, Czech. Math. J..

    Google Scholar 

  18. Medkova, D. (1997). Solution of the Robin problem for the Laplace equation, preprint No.120, Academy of Sciences of the Czech republic.

    Google Scholar 

  19. Netuka, I. (1971). Smooth surfaces with infinite cyclic variation, Cas. pest. mat., Vol. 96.

    Google Scholar 

  20. Netuka, I. (1971). The Robin problem in potential theory, Comment. Math. Univ. Carolinae, Vol. 12, (pages 205–211 ).

    Google Scholar 

  21. Netuka, I. (1972). Generalized Robin problem in potential theory, Czech. Math. J., Vol. 22(97), (pages 312–324).

    Google Scholar 

  22. Netuka, I. (1972). An operator connected with the third boundary value problem in potential theory, Czech Math. J., Vol. 22(97), (pages 462–489).

    Google Scholar 

  23. Netuka, I. (1972). The third boundary value problem in potential theory, Czech. Math. J., Vol. 2(97), (pages 554–580).

    Google Scholar 

  24. Netuka, I. (1975). Fredholm radius of a potential theoretic operator for convex sets, Cas. pest. mat., Vol. 100, (pages 374–383 ).

    Google Scholar 

  25. Neumann, C. (1877). Untersuchungen über das logarithmische und Newtonsche Potential, Teubner Verlag, Leipzig.

    Google Scholar 

  26. Neumann, C. (1870). Zur Theorie des logarithmischen und des Newtonschen Potentials, Berichte über die Verhandlungen der Königlich Sachsischen Gesellschaft der Wissenschaften zu Leipzig, Vol. 22, (pages 49–56, 264–321 ).

    Google Scholar 

  27. Neumann, C. (1888). Über die Methode des arithmetischen Mittels, Hirzel, Leipzig, 1887 (erste Abhandlung), 1888 (zweite Abhandlung).

    Google Scholar 

  28. Plemelj, J. (1911). Potentialtheoretische Untersuchungen, B. G. Teubner, Leipzig.

    Google Scholar 

  29. Radon, J. (1919). Über Randwertaufgaben beim logarithmischen Potential, Sitzber. Akad. Wiss. Wien, Vol. 128, (pages 1123–1167 ).

    Google Scholar 

  30. Radon, J. (1987). Über Randwertaufgaben beim logarithmischen Potential, Collected Works, Vol. 1, Birkhäuser, Vienna.

    Google Scholar 

  31. Rathsfeld, A. (1992). The invertibility of the double layer potential in the space of continuous functions defined on a polyhedron. The panel method, Applicable Analysis, Vol. 45, (pages 1–4, 135–177 ).

    Google Scholar 

  32. Rathsfeld, A. (1995). The invertibility of the double layer potential in the space of continuous functions defined on a polyhedron. The panel method, Erratum. Applicable Analysis, Vol. 56, (pages 109–115 ).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Praha, D.M. (2000). Solution of the Robin and Dirichlet Problem for the Laplace Equation. In: Gilbert, R.P., Kajiwara, J., Xu, Y.S. (eds) Direct and Inverse Problems of Mathematical Physics. International Society for Analysis, Applications and Computation, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3214-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3214-6_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4818-2

  • Online ISBN: 978-1-4757-3214-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics