Algorithms of the Asymptotic Nonlinear Analysis

  • Alexander D. Bruno
Part of the International Society for Analysis, Applications and Computation book series (ISAA, volume 5)

Abstract

All local and asymptotic first approximations of a polynomial, of a differential polynomial and of a system of such polynomials may be selected algorithmically. Here the first approximation of a solution of the system of equations is a solution of the corresponding first approximation of the system of equations. The power transformations induce linear transformations of vector exponents and commute with the operation of selecting first approximations. In a first approximation of a system of equations they allow to reduce number of parameters and to reduce the presence of some variables to the form of derivatives of their logarithms. If the first approximation is the linear system, then in many cases the system of equations can be transformed into the normal form by means of the formal change of coordinates. The normal form is reduced to the problem of smaller dimension by means of the power transformation. Combining these algorithms, in many problems we can resolve a singularity, find parameters determining properties of solutions and obtain the asymptotic expansions of solutions. Some applications from Mechanics, Celestial Mechanics and Hydrodynamics are indicated.

Keywords

Periodic Solution Normal Form Normal Cone Power Transformation Center Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bruno, A. D. (1979). Local Method of Nonlinear Analysis of Differential Equations, Nauka, Moscow, (Russian) Local Methods in Nonlinear Differential Equations, Springer- Verlag, Berlin, 1989 ( English).Google Scholar
  2. [2]
    Bruno A. D. and Soleev, A. (1991). Local uniformization of branches of a space curve, and Newton polyhedra,Algebra i Analis, Vol. 3(1), (pages 67–101), (R) = St. Petersburg Math. J., Vol. 3(1), (1992), (pages 53–82) (E).Google Scholar
  3. [3]
    Bruno, A. D. and A. Soleev. (1994). First approximations of algebraic equations,Doklady Akademii Nauk, Vol. 335(3), (pages 277–278) (R) = Russian Ac. Sci. Doklady. Mathem., Vol. 49(2), (pages 291–293) (E).Google Scholar
  4. [4]
    Bruno, A. D. (1995). The Newton polyhedron in the Nonlinear Analysis,Vestnik Moskovskogo Universiteta, Vol. 1(6), (pages 45–51), (R) = Mathem. Bulletin, Vol. 50, (1995) (E).Google Scholar
  5. [5]
    Bruno, A. D. (1994). First approximations of differential equations,Doklady Akademii Nauk, Vol. 335(4), (pages 413–416), (R) = Russian Acad. Sci. Doklady. Mathem., Vol. 49(2), (pages 334–339) (E).Google Scholar
  6. [6]
    Bruno, A. D. (1995). General approach to the asymptotic analysis of singular perturbations, In: Dynamical Systems and Chaos, edited, N. Aoki, K. Shiraiwa and Y. Takahashi, World Scientific, Singapore, Vol. 1, (pages 11–17 ).Google Scholar
  7. [7]
    Soleev, A. and A. B. Aranson. (1994). Computation of a polyhedron and of normal cones of its faces, Preprint, Vol. 36, Inst. Appl. Math., Moscow, (R).Google Scholar
  8. [8]
    Puiseux, V. (1850). Recherches sur les fonctions algebriques, J. de Math. pures et appl., Vol. 15, (pages 365–480 ).Google Scholar
  9. [9]
    Newton, I. (1964). A treatise of the method of fluxions and infinite series, with its application to the geometry of curve lines, in The Mathematical Works of Isaac Newton, (Edited by Harry Woolf), Vol. 1, (pages 27–137 ), Johnson Reprint Corp., N.Y. and London (1964).Google Scholar
  10. [10]
    Bruno, A. D. (1962). The asymptotic behavior of solutions of nonlinear systems of differential equations,Dokl. Akad. Nauk SSSR, Vol. 143(4), (pages 763–766), (R) = Soviet Math. Dokl., Vol. 3, (pages 464–467) (E).Google Scholar
  11. [11]
    Gindikin, S. G. (1974). Energy estimates and Newton polyhedra,Trudy Mosk. Mat. Obsc., Vol. 31, (pages 189–236), (R) = Trans. Moscow Math. Soc., Vol. 31, (pages 193–246), (E).Google Scholar
  12. [12]
    Khovanskii, A. G. (1983). Newton polyhedra (resolution of singularities),In: Itogi Nauki i Tekhniki: Sovremennye Problemy Mat., Vol. 22, (pages 207–239), VINITI, Moscow, (R) = J. Sov. Math., Vol. 27, (1984), (pages 2811–2830), (E).Google Scholar
  13. [13]
    Bruno, A. D. (1996). Algorithms of Nonlinear Analysis, Uspehi Matem. Nauk, Vol. 51(5), (R) = Russian Math. Surveys, Vol. 51(5), (E).Google Scholar
  14. [14]
    Bruno, A. D. and Soleev, A. (1990). Local uniformization of branches of an algebraic curve, Preprint, Vol. 34, I.H.E.S., Paris.Google Scholar
  15. [15]
    Bruno, A. D. and Parusnikov, V. I. (1997). Comparison of different generalizations of continued fractions, Matem. Zametki, Vol. 61(3), (pages 339–348), (R) = Math. Notes, Vol. 61(3), (1997) (E).Google Scholar
  16. [16]
    Bruno, A. D. (1964). Normal form of differential equations, Dokl. Akad. Nauk SSSR, Vol. 157(6), (pages 1276–1279), (R) = Soviet Math. Dokl., Vol. 5, (1964), (pages 1105–1108), (E).Google Scholar
  17. [17]
    Bruno, A. D. (1971). Analytical form of differential equations, Trudy Mosk. Mat. Obsc., Vol. 25, (pages 119–262); Vol. 26, (1972), (pages 199–239), (R) = Trans. Moscow Math. Soc., Vol.25, (1971), (pages 131–288), Vol. 26, (1972), (pages 199–239), (E).Google Scholar
  18. [18]
    Marsden, J. E. and McCracken, M. (1976). The Hopf Bifurcation and Its Applications, Springer-Verlag, New York, 1976 ( E) = Mir, Moscow, 1980, ( R).MATHGoogle Scholar
  19. [19]
    Bruno, A. D. (1995). Ways of computing a normal form, Dokl. Akad. Nauk, Vol. 344(3), (pages 298–300), (R) = Russian Ac. Sci. Doklady Math., Vol. 52, (1995), (pages 200–202), (E).Google Scholar
  20. [20]
    Bruno, A. D. (1990). The Restricted 3-Body Problem, Nauka, Moscow, (R) = Walter de Gruyter, Berlin, 1994 ( E).Google Scholar
  21. [21]
    Henon, M. (1968). Sur les orbites interplanetaires qui rencontrent deux fois la Terre, Bull. Astron., Vol. 3(3), (pages 377–402).Google Scholar
  22. [22]
    Bruno, A. D. (1978). On periodic flights round moon, Preprint, Vol. 91, Inst. Appl. Math., Moscow, (R) = On periodic flybys of the moon, Celestial Mechanics, Vol. 24(3), (pages 255–268) (E).Google Scholar
  23. [23]
    Bruno, A. D. (1992). A general approach to the study of complex bifurcations, Prikladnaja Mekhanika, Vol. 28(12), (pages 83–86) (R) = International Applied Mechanics, Vol. 28(12), (pages 849–853) (E).Google Scholar
  24. [24]
    Bruno, A. D. (1994). Singular perturbations in Hamiltonian Mechanics, In: Hamiltonian Mechanics, (Edited by J. Seimenis), Plenum Press, New York, (pages 43–49 ).Google Scholar
  25. [25]
    Henon, M. and M. Guyot. (1970). Stability of periodic orbits in the restricted problem, In: Periodic Orbits, Stability and Resonances, (G. E. O. Giacaglia, ed.), Reidel, Dordrecht, (pages 349–374 ).Google Scholar
  26. [26]
    Bruno, A. D. and A. Soleev. (1995). The Hamiltonian truncations of a Hamiltonian system, Preprint, Vol. 55, Inst. Appl. Math., Moscow, (R).Google Scholar
  27. [27]
    Bruno, A. D. and A. Soleev. (1995). Newton polyhedra and Hamiltonian systems, Vestnik Moskovskogo Universiteta, Vol. 1(6), (pages 84–86) (R) = Mathem. Bulletin, Vol. 50, (E).Google Scholar
  28. [28]
    Bruno, A. D. and A. Soleev. (1996). Hamiltonian truncated systems of a Hamiltonian system, Doklady Akademii Nauk, Vol. 349(2), (pages 153155) (R) = Russian Acad. Sci. Doklady. Mathematics, Vol. 54(1), (pages 512–514) (E).Google Scholar
  29. [29]
    Bruno, A. D. (1993). Simple (double, multiple) periodic solutions of the restricted three-body problem in the Sun-Jupiter case, Preprints, Vols. 66, 67, 68, Inst. Appl. Math., Moscow, (R).Google Scholar
  30. [30]
    Bruno, A. D. (1996). Zero-multiple and retrograde periodic solutions of the restricted three-body problem, Preprint, Vol. 93, Inst. Applied Math., Moscow, (R).Google Scholar
  31. [31]
    Bruno, A. D. and V. Yu. Petrovich. (1994). Computation of periodic oscillations of a satellite. Singular case, Preprint, Vol. 44, Inst. Appl. Math., Moscow, (R).Google Scholar
  32. [32]
    Bruno, A. D. and V. P. Varin. (1995). First (second) limit problem for the equation of oscillations of a satellite, Preprints, Vol. 124 and 128, Inst. of Applied Math., Moscow, (R).Google Scholar
  33. [33]
    Bruno, A. D. and V. P. Varin. (1997). Limit problems for the equation of oscillations of a satellite, Celestial Mechanics, Vol. 67(1), (pages 1–40).Google Scholar
  34. [34]
    Bruno, A. D. and V. Yu. Petrovich. (1994). Regularization of oscillations of a satellite on a very stretched orbit. Preprint, Vol. 4, Inst. Appl. Math., Moscow, (R).Google Scholar
  35. [35]
    V. Varin, V. (1996). The critical families of periodic solutions of the equation of oscillations of a satellite, Preprint, Vol. 101, Inst. Appl. Math., Moscow, (R).Google Scholar
  36. [36]
    Varin, V. (1997). The critical subfamilies of the family Ko of periodic solutions of the equation of oscillations of a satellite, Preprint, Vol. 20, Inst. Appl. Math., Moscow, (R).Google Scholar
  37. [37]
    Sadov, S. Yu. (1995). Normal form of the equation of oscillations of a satellite in a singular case, Matem. Zametki, Vol. 58(5), (pages 785–789) (R) = Mathematical Notes, Vol. 58(5), (pages 1234–1237) (E).Google Scholar
  38. [38]
    Sadov, S. Yu. (1996). Higher approximations of the method of averaging for the equation of plane oscillations of a satellite, Preprint, Vol. 48, Inst. Appl. Math., Moscow, (R).Google Scholar
  39. [39]
    Iooss, G. and K. Kirchgaessner, (1992). Water waves for small surface tension: an approach via normal form, Proceedings of the Royal Society of Edinburg, Vol. 122A, (pages 267–299 ).Google Scholar
  40. [40]
    Arnold, V. I. (1971). On matrices depending on parameters, Uspehi Mat. Nauk, Vol. 26(2), (pages 101–114) (R) = Russ. Math. Surveys, Vol. 26(2), (pages 29–44) (E).Google Scholar
  41. [41]
    Soleev, A. and A. B. Aranson. (1995). The first approximation of a reversible system of ordinary differential equations, Preprint, Vol. 28, Inst. of Applied Mathematics, Moscow, (R).Google Scholar
  42. [42]
    Bruno, A. D. and Soleev, A. (1995). Local analysis of singularity of a reversible system of ordinary differential equations: simple cases, Preprint, Vol. 40, Inst. of Applied Mathematics, Moscow, (R).Google Scholar
  43. [43]
    Bruno, A. D. and Soleev, A. (1995). Local analysis of singularity of a reversible system of ordinary differential equations: complex cases, Preprint, Vol. 47, Inst. of Applied Mathematics, Moscow, (R).Google Scholar
  44. [44]
    Bruno, A. D. and Soleev, A. (1995). Homoclinic solutions of a reversible system of ordinary differential equations, Preprint, Vol. 54. Inst. of Applied Mathematics, Moscow, (R).Google Scholar
  45. [45]
    Belitskii, G. R. (1975). The normal form of local mappings, Uspekhi Mat. Nauk, Vol. 30(1), (page 223), (R).Google Scholar
  46. [46]
    Hammersley, J. M. and G. Mazarino. (1989). Computational aspect of some autonomous differential equations, Proc. Roy. Soc. London, Ser. A, Vol. 424, (pages 19–37 ).Google Scholar
  47. [47]
    Bruno, A. D. and Soleev, A. (1995). Local analysis of singularities of a reversible ODE system. Uspehi Mat. Nauk 50:6 (1995), 169–170 (R) = Russian Math. Surveys 50:6 (1995), 1258–1259 (E).Google Scholar
  48. [48]
    Bruno, A. D. and Soleev, A. (1995). Bifurcations of solutions in a reversible ODE system, Doklady Akademii Nauk, Vol. 345(5), (pages 590–592), (R) = Russian Acad. Sci. Doklady. Mathematics, Vol. 52(3), (pages 419–421), (E).Google Scholar
  49. [49]
    Bruno, A. D. and Vasil’ev, M. M. (1995). Newton polyhedra and the asymptotic analysis of the viscous fluid flow around a flat plate, Preprint, Vol. 44, Inst. of Applied Math., Moscow, (R).Google Scholar
  50. [50]
    Van Dyke, M. (1967). Perturbation Methods in Fluid Mechanics. Academic Press, New York, London, (E) = Mir, MOscow, ( R).MATHGoogle Scholar
  51. [51]
    Bruno, A. D. (1988). Bifurcation of the periodic solutions in the symmetric case of a multiple pair of imaginary eigenvlues, in Numerical Solution of Ordinary Differential Equations, (Edited by S.S. Filippov), (pages 161176), Inst. Appl. Math, Moscow, (R) = Selecta Math. formerly Sovietica, Vol. 12(1), (1993), (pages 1–12), (E).Google Scholar
  52. [52]
    Bruno, A. D. (1990). The normal form of a system, close to a Hamiltonian system, Matem. Zametki, Vol. 48(5), (pages 35–46), (R) = Matem Notes, Vol. 48(5/6), (1991), (pages 1100–1108), (E).Google Scholar
  53. [53]
    Sadov, S. Yu. (1994). On a dynamic system arising from a finite-dimensional approximation of the Schrödinger equation, Matem. Zametki, Vol. 56(3), (pages 118–133), (R) = Mathematical Notes, Vol. 56(3), (1994), (pages 960–971), (E).Google Scholar
  54. [54]
    Bruno, A. D. and Sadov, S. Yu. (1995). Formal integral of a divergence free system, Matem. Zametki, Vol. 57(6), (pages 803–813), (R) = Math. Notes, Vol. 57(3), (1995), (pages 565–572), (E).Google Scholar
  55. [55]
    Bruno, A. D. and Petrovich, V. Yu. (1997). Computation of periodic oscillations of a satellite, Matematicheskoe Modelirovanie, Mathematical Modelling, Vol. 9(6), (pages 82–94), (R).Google Scholar
  56. [56]
    Sadov, S. Yu. (1997). Plane motions of a near symmetric satellite about its mass center with rational rotation numbers, Preprint, Vol. 31, Inst. Appl. Math., Moscow, (R).Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • Alexander D. Bruno
    • 1
  1. 1.Department of MathematicsKeldysh Institute of Applied MathematicsMoscowRussia

Personalised recommendations