Automated Electron Backscatter Diffraction: Present State and Prospects

  • Robert A. Schwarzer


Electron backscatter diffraction (EBSD), or more precisely backscatter Kikuchi diffraction (BKD), in the SEM enables individual grain orientations, local texture and point-to-point orientation correlations to be determined routinely on bulk surfaces of polycrystalline materials. The technique has found rapid acceptance in materials science within the last few years (Randle, 1992; Schwarzer, 1997a) due to the wide availability of SEMs, the ease of sample preparation from the bulk, and the access to complementary information about the microstructure on a submicron scale. The combination of several easy-to-use techniques makes the SEM a powerful and almost universal analytical instrument in the hands of the physical metallurgist as well as the earth scientist. From the same specimen area, surface configuration and morphology of micro structure are perceived in great detail by the relief and orientation contrast in secondary and backscatter electron images, element distributions are accessed by EDS or cathodoluminescence analysis, and the orientations of single grains and phases can now be determined, as a complement, by EBSD.


Grain Orientation Orientation Distribution Function Phosphor Screen Pattern Quality Material Science Forum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, B.L., Wright, S.I., and Kunze, K., 1993, Orientation imaging: The emergence of a new microscopy, Metall Trans. 24A:819.Google Scholar
  2. Brümmer, O., and Stephanik, H. eds., 1976, Dynamische Interferenztheorie, Akad. Verlagsges. Geest and Portig, Leipzig.Google Scholar
  3. Bunge, HJ., 1982, Texture Analysis in Materials Science, Butterworths Publ., London.Google Scholar
  4. Bunge, HJ., 1994, Statistical crystallography of the polycrystal, Materials Science Forum. Vol. 157–162:13.CrossRefGoogle Scholar
  5. Bunge, HJ., 1999a, Texture, microstructure and properties of polycrystalline materials, in: Textures in Materials Research, R.K. Ray and A.K. Singh, eds., Oxford & IBH Publishing Co., New Delhi, 3.Google Scholar
  6. Bunge, HJ., 1999b, Texture and structure of polycrystals, in: Defect and Microstructure Analysis by Diffraction, R.L. Snyder, J. Fiala, and H.J. Bunge, eds., Oxford University Press, New York, 405.Google Scholar
  7. Bunge, HJ., 2000, Grain orientation and texture, in: Industrial Applications ofX-Ray Diffraction, F.H. Chung and D.K. Smith eds., Marcel Dekker Inc., New York, Basel, 919.Google Scholar
  8. Deans, S.R., 1983, The Radon Transform and Some of Its Applications. John Wiley & Sons Inc., New York.Google Scholar
  9. Duda, R.O., and Hart, P.E., 1972, Use of the Hough transformation to detect lines and curves in pictures, Comm.ACM. 15:11.CrossRefGoogle Scholar
  10. Gaukler, K.H., and Schwarzer, R., 1971, Verbessertes Verfahren zur Bestimmung des mittleren inneren Potentials aus Reflexions-Kikuchi-Diagrammen. Optik. 33:215.Google Scholar
  11. Gerth, D., and Schwarzer, R.A., 1993, Graphical representation of grain and hillock orientations in annealed Al-1% Si films, Textures and Microstructures. 21:177.CrossRefGoogle Scholar
  12. Hough, P.V.C., 1962, Methods and means for recognizing complex patterns. US patent 3069654.Google Scholar
  13. Humphreys, F.J., and Brough, I., 1999, EBSD with FEGSEM — issues, advances and applications, Microscopy and Microanalysis. 5/Suppl. 2:240.Google Scholar
  14. Krieger Lassen, N.C., Juul Jensen, D., and Conradsen, C, 1994, Automated recognition of deformed and recrystallized regions in partly recrystallized samples using electron back scattering patterns. Materials Science Forum. 157–162, Part 7:149.CrossRefGoogle Scholar
  15. Krieger Lassen, N.C., 1994, Automated Determination of Crystal Orientations from Electron Backscattering Patterns, Ph.D. Thesis, Danmarks Tekniske Universitet, Lyngby.Google Scholar
  16. Kunze, K., Zaefferer, S., and Schwarzer, R., 1994, Orientierungsmapping mit dem Raster-Elektronen mikroskop. Beitr. Elektronenmikroskop. Direktabb. Oberfl. 27:169.Google Scholar
  17. Michael, J.R., and Goehner, R.P., 1994, Advances in backscattered-electron Kikuchi patterns for crystallographic phase identification, in: Proc. 5 2nd Annual Meeting of the Microscopy Society of America, G.W. Bailey and AJ. Garratt-Reed, eds., San Francisco Press Inc., 596.Google Scholar
  18. Morneburg, H., 1995, Bildgebende Systeme für die medizinische Diagnostik. Siemens & Publicis MCD Verlag, Munich.Google Scholar
  19. Morawiec, A., 1999, Reliability of automatic orientation determination from Kikuchi patterns, in: Proc. 12th Int. Conf. Textures of Materials (ICOTOM-12), J.A. Szpunar, ed., NRC Research Press, Ottawa, 1:62.Google Scholar
  20. Natterer, F., 1986, The Mathematics of Computerized Tomography, John Wiley & Sons Ltd. and B.G. Teubner, Stuttgart.Google Scholar
  21. Radon, J., 1917, Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. Ber. Ver h. Sachs. Akad. Wiss. Leipzig, Math.-Naturw. Klasse. 69:262.Google Scholar
  22. Rändle, V., 1992, Microtexture Determination and its Applications, Institute of Materials, London.Google Scholar
  23. Reimer, L., 1985, Scanning Electron Microscopy, Springer Verlag, Berlin, Heidelberg, New York, Tokyo.Google Scholar
  24. Rohde, D., 1999, NORAN INSTRUMENTS Inc. private communication. Google Scholar
  25. Schäfer, B., 1998, ODF computer program for high-resolution texture analysis of low-symmetry materials, Materials Science Forum, 273–275:113.CrossRefGoogle Scholar
  26. Schwarzer, R., 1989, Die Aufnahme von Reflexions-Kikuchi-Diagrammen im REM mit einer peltiergekühlten, integrierenden CCD-Videokamera, Beitr. elektronenmikr. Direktabb. Oberfl. 22:279.Google Scholar
  27. Schwarzer, R.A., 1994, Preparation of high-resistance or sensitive samples for grain orientation measurement with electron microscopes, Materials Science Forum, 157–162:201.CrossRefGoogle Scholar
  28. Schwarzer, R.A., 1997a, Automated crystal lattice orientation mapping using a computer-controlled SEM, Micron, 28:249.CrossRefGoogle Scholar
  29. Schwarzer, R.A., 1997b, Advances in crystal orientation mapping with the SEM and TEM, Ultramic. 67:19.CrossRefGoogle Scholar
  30. Schwarzer, R.A. and Sukkau, J., 1998, Automated crystal orientation mapping (ACOM) with a computer- controlled TEM by interpreting transmission Kikuchi patterns, Materials Science Forum. 273–275:215.CrossRefGoogle Scholar
  31. Schwarzer, R.A., 1999, Advancements of ACOM and applications to orientation stereology, in: Proc. 12th Int. Conf. Textures of Materials (ICOTOM-12), J.A. Szpunar, ed., NRC Research Press, Ottawa, 1:52.Google Scholar
  32. Wagner, F., 1986, Texture determination by individual orientation measurements, In: Experimental Techniques of Texture Analysis, H.J. Bunge, ed., DGM-Informations-Ges., Oberursel, 115.Google Scholar
  33. Wu, CT., Adams, B.L., Bauer, C.L., Casasent, D., Morawiec, A., Ozdemir, S., and Talukder, A., 1999, Mapping the mesoscale interface structure in polycrystalline materials, Micro, and Microanal. 5/2:260.Google Scholar
  34. Yang, W., Adams, B.L., and De Graef, M., 1999, Adaptive Orientation Imaging Microscopy, In: Proc. 12th Int. Conf Textures of Materials (ICOTOM-12), J.A. Szpunar, ed., NRC Research Press, Ottawa, 1:192.Google Scholar
  35. Zaefferer, S., and Schwarzer, R.A., 1994, Automated measurement of single grain orientations in the TEM, Z. Metallkunde, 85:585.Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Robert A. Schwarzer
    • 1
  1. 1.Physikalisches Institut - AG TexturTechnische Universität ClausthalClausthal-ZellerfeldGermany

Personalised recommendations