Anisotropic Plasticity Modeling Incorporating EBSD Characterization of Tantalum and Zirconium

  • John F. Bingert
  • Thomas A. Mason
  • George C. Kaschner
  • Paul J. Maudlin
  • George T. GrayIII


The application of automated EBSD techniques in the context of an overall predictive materials modeling effort incorporating anisotropic properties for tantalum and zirconium is covered in this chapter. The focus will be on the role of microtextural investigations as an integral tool supporting the development and validation of material models that incorporate anisotropic constitutive behavior. Continuum mechanics codes require accurate descriptions of materials behavior to adequately predict large-strain deformation response. The corresponding requirement of characterizing micro structure s after significant deformation places severe requirements on the EBSD system. In this work, a Philips XL30 SEM employing a warm Schottky FEG was used for all data collection; the combination of high resolution with adequate beam current was a necessity for analyzing fine detail amid heavily worked structures. The ability to spatially resolve orientation differences on the order of 100 nm is achievable. All EBSD data collection and analysis was performed with TSL’s OIM™ software, while the popLA code (Kallend et al., 1991) was used for x-ray texture analysis.


Pole Figure Yield Surface Mechanical Threshold Stress Polycrystal Plasticity Taylor Cylinder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Chen, S.R., and Gray, III G.T., 1996, Constitutive behavior of tantalum and tantalum-tungsten alloys, Met. Trans. 27A:2994.Google Scholar
  2. Christian, J.W., and Mahajan, S., 1995, Deformation twinning, Prog. Mat. Sci. 39:1.CrossRefGoogle Scholar
  3. Clark, J.B., Garrett, Jr., R.K., Jungling, T.L., and Vandermeer, R.A., 1991, Effect of processing variables on texture and texture gradients in tantalum, Met. Trans. 22A:2039.Google Scholar
  4. Follansbee, P.S., and Kocks, U.F., 1988, A constitutive description of the deformation of copper based on the use of mechanical threshold stress as an internal state variable, Acta Metall. 36:81.CrossRefGoogle Scholar
  5. Gray III G.T., Bourne, N.K., Zocher, M.A., Maudlin, P.J., Millett, J.C.F., 1999, Influence ofcrystallographic anisotropy on the Hopkinson fracture ‘spallation’ of zirconium, in: Shock Compression of Condensed Matter -1999, M.F. Furnish, ed., Amer. Inst. Physics Press, Woodbury.Google Scholar
  6. Hawkyard, J.B., 1969, A theory for the mushrooming of flat-ended projectiles impinging on a flat rigid anvil, using energy considerations. Int. J. Mech. Sci. 11:313.CrossRefGoogle Scholar
  7. Hill, R., 1950, The Mathematical Theory of Plasticity, Oxford University Press, London.Google Scholar
  8. Hughes, D.A., Liu, Q., Chrzan, D.C., and Hansen, N., 1997, Scaling of microstructural parameters: misorientations of deformation induced boundaries, Acta mater. 45:105.CrossRefGoogle Scholar
  9. Hughes, D.A., and Hansen, N., 1997, High angle boundaries formed by grain subdivision mechanisms, Acta mater. 45:3871.CrossRefGoogle Scholar
  10. Hughes, D.A., Chrzan, D.C., Liu, Q., and Hansen, N., 1998, Scaling of misorientation angle distributions, Phys. Rev. Let. MA 664. Google Scholar
  11. Humphreys, F.J., Prangnell, P.B., Bowen, J.R., Gholinia, A., and Harris, C, 1999, Developing stable fine- grain microstructures by large strain deformation, Phil. Trans. R. Soc. Lond. A. 357:1663.CrossRefGoogle Scholar
  12. Kallend, J.S., Kocks, U.F., Rollett, A.D., and Wenk, H.-R., 1991, Operational texture analysis, Mat. Sci. Eng. A132:1.Google Scholar
  13. Kaschner, G.C., Gray, III G.T., and Chen, S.R., 1997, The influence of texture and impurities on the mechanical behavior of zirconium, in: Shock Compression of Condensed Matter, S.C. Schmidt, D.P. Dandekar, and J.W. Forbes, eds., American Institute of Physics, Amherst, MA.Google Scholar
  14. Kaschner, G.C., and Gray, III, G.T., 2000, The influence of crystallographic texture and interstitial impurities on the mechanical behavior of zirconium, submitted to Metall. Trans. A. Google Scholar
  15. Kelly, A.M., Bingert, S.R., and Reiswig, R.D., 1996, New metallographic preparation techniques for tantalum and tantalum alloys, Microstr. Sci. 23:185.Google Scholar
  16. Kelly, A.M., Bingert, S.R., and Thoma, D.J., 1998, Application of new tantalum metallographic preparation techniques to Group IV and V metals, Microstr. Sci. 26:347.Google Scholar
  17. Kocks, U.F., and Chandra, H., 1982, Slip geometry in partially constrained deformation, Acta Metal. 30:695.CrossRefGoogle Scholar
  18. Kuhlman-Wilsdorf, D., and Hansen, N., 1991, Geometrically necessary, incidental and subgrain boundaries, Scr. Metall. Mater.251557. Google Scholar
  19. Lebensohn, R.A., and Tomé, C.N., 1993, A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: application to zirconium alloys, Acta metali. mater. 41:2611.CrossRefGoogle Scholar
  20. Lee, E.H., and Tupper, S.J., 1954, Analysis of plastic deformation in a steel cylinder striking a rigid target, J. Appl.Mech. 21:63.Google Scholar
  21. Liu, Q., and Hansen, N., 1995, Geometrically necessary boundaries and incidental dislocation boundaries formed during cold deformation, Scr. Metall. Mater. 32:1289.CrossRefGoogle Scholar
  22. Maudlin, P.J., Wright, S.I., Kocks, U.F., and Sahota, M.S., 1996, An application of multisurface plasticity: yield surfaces of textured materials, Acta Mater. 44:4027.CrossRefGoogle Scholar
  23. Maudlin, P. J., Bingert, J.F., House, J.W., and Chen, S.R., 1999, On the modeling of the Taylor cylinder impact test for orthotropic textured materials: experiments and simulations, Int. J. Plasticity 15:139.CrossRefGoogle Scholar
  24. Maudlin, P.J., Bingert, J.F., Gray III G.T., and Garrett Jr., R.K., 1999b, Symmetry investigation of textured polycrystal properties, to be published in: Proc. Fall 99 MRS Meeting. Google Scholar
  25. Maudlin, P.J., Gray, III G.T., Cady, CM., and Kaschner, G.C., 1999c, High-rate material modeling and validation using the Taylor cylinder impact test, Phil. Trans. R. Soc. Lond. A. 357:1707.Google Scholar
  26. Maudlin, P.J., and Bingert, J.F., 1999d, unpublished research.Google Scholar
  27. Reed-Hill, R.E., 1964, Role of deformation twinning in the plastic deformation of a polycrystalline anisotropic metal, in: Deformation Twinning, J.P. Hirth, R.E. Reed-Hill, and H.C. Rogers, eds., TMS, Warrendale, PA.Google Scholar
  28. Schwartz, A. J., Lasilla, D.H., and LeBlanc, M.M., 1998, The effects of tungsten addition on the microtexture and mechanical behavior of tantalum plate, Mat. Sci. Eng. A244:178.Google Scholar
  29. Taylor, G.I., 1948, The use of flat-ended projectiles for determining dynamic yield stress. I. Theoretical considerations. Proc. R. Soc. Lond. A. 194:289.CrossRefGoogle Scholar
  30. Tenckhoff, E., 1988, Deformation Mechanisms, Texture, and Anisotropy in Zirconium and Zircaloy, Special Technical Publication 966, ASTM, Philadelphia, PA.Google Scholar
  31. Tomé, C, Canova, G.R., Kocks, U.F., Christodolou, N., and Jonas, J.J., 1984, The relation between macroscopic and microscopic strain-hardening in fcc polycrystals, Acta Metall 32:1637.CrossRefGoogle Scholar
  32. VonDreele, R.B., 1997, Quantitative texture analysis by Rietveld refinement, J. Appl. Crystall 30:517.CrossRefGoogle Scholar
  33. Wright, S.I., Bingert, S.R., and Johnson, M.D., 1994, Effect of annealing temperature on the texture of rolled tantalum and tantalum-10 wt.% tungsten, in: Proc. 2nd Intl. Conf. on Tungsten and Refractory Metals, A. Bose and R.J. Dowding, eds., MPIF, Princeton, NJ.Google Scholar
  34. Wright, S.I., Gray III G.T., and Rollett, A.D., 1994b, Texture and microstructural gradient effects on the mechanical behavior of a tantalum plate, Met. Mat. Trans. 25A:1025.CrossRefGoogle Scholar
  35. Wright, S.I., Beaudoin, A.J., and Gray III G.T., 1994c, Texture gradient effects in tantalum, Mat. Sei. Forum. 157–162:1695.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • John F. Bingert
    • 1
  • Thomas A. Mason
    • 1
  • George C. Kaschner
    • 1
  • Paul J. Maudlin
    • 2
  • George T. GrayIII
    • 1
  1. 1.Materials Science and Technology DivisionLos Alamos National LaboratoryLos AlamosUSA
  2. 2.Theoretical DivisionLos Alamos National LaboratoryLos AlamosUSA

Personalised recommendations