Ideal Theory in Pullbacks

  • Stefania Gabelli
  • Evan Houston
Part of the Mathematics and Its Applications book series (MAIA, volume 520)


In this article, we shall discuss pullback diagrams of the following type:


Class Group Maximal Ideal Ideal Theory Fractional Ideal Valuation Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D.F. Anderson and D. Dobbs, Pairs of rings with the same prime ideals, Can. J. Math. 32 (1980), 362–384.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    D.F. Anderson and A. Ryckaert, The class group of D + M, J. Pure Appl. Algebra 52 (1988), 199–212.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    E. Bastida and R. Gilmer, Overrings and divisorial ideals of the form D+M, Michigan Math. J. 20 (1973), 79–95.MathSciNetzbMATHGoogle Scholar
  4. [4]
    M. Boisen and P. Sheldon, CPI-extensions: overrings of integral domains with special prime spectrum, Can. J. Math. 24 (1977), 722–737.MathSciNetCrossRefGoogle Scholar
  5. [5]
    J. Brewer and E. Rutter, D+M constructions with general overrings, Michigan Math. J. 23 (1976), 33–41.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    P.-J. Cahen, Couples d’anneaux partageant un idéal, Arch. Math. 51 (1988), 505–514.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    P.-J. Cahen, Construction B, I, D et anneaux localement ou residuellement de Jaffard, Arch. Math. 54 (1990), 125–141.MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    D. Costa, J. Mott, and M. Zafrullah, The construction D + XD X [X], J. Algebra 53 (1978), 423–439.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    D. Dobbs, E. Houston, T. Lucas, and M. Zafrullah, t-linked overrings and Prüfer v-multiplication domains, Comm. Algebra 17 (1989), 2835–2852.MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10]
    D. Dobbs and I. Papick, When is D + M coherent, Proc. Amer. Math. Soc. 56 (1976), 51–54.MathSciNetzbMATHGoogle Scholar
  11. 11]
    M. Fontana, Topologically defined classes of commutative rings, Ann. Mat. Pura Appl. 123 (1980), 331–355.MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12]
    M. Font ana and S. Gabelli, On the class group and the local class group of a pullback, J. Algebra 181 (1996), 803–835.MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13]
    M. Fontana and S. Gabelli, Prüfer domains with class group generated by the classes of the invertible maximal ideals, Comm. Algebra 25 (1997), 3993–008.MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14]
    M. Fontana, S. Gabelli, and E. Houston, UMT-domains and domains with Prüfer integral closure, Comm. Algebra 26 (1998), 1017–1039.MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15]
    M. Fontana, J. Huckaba, and I. Papick, Prüfer domains, Dekker, New York, 1977.Google Scholar
  16. 16]
    S. Gabelli and E. Houston, Coherentlike conditions in pullbacks, Michigan Math. J. 44 (1997), 99–123.MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17]
    R. Gilmer, Multiplicative ideal theory, Queen’s Papers on Pure and Applied Mathematics, No. 12, Queen’s University, Kingston, Ontario, 1968.zbMATHGoogle Scholar
  18. 18]
    R. Gilmer, Multiplicative ideal theory, Dekker, New York, 1972.zbMATHGoogle Scholar
  19. 19]
    R. Gilmer and W. Heinzer, On the number of genearators of an invertible ideal, J. Algebra 14 (1970), 139–151.MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20]
    J. Hedstrom and E. Houston, Pseudo-valuation domains, Pacific J. Math. 75 (1978), 137–147.MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21]
    R. Heitmann, Generating ideals in Prüfer domains, Pacific J. Math. 62 (1976), 117–126.MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22]
    P. Jaffard, Les systems d’idéaux, Dunod, Paris, 1960.Google Scholar
  23. 23]
    A. Mimouni, Coherent-like properties in pullbacks, in Advances in commutative ring theory, Lecture Notes in Pure and Applied Mathematics 205, pp. 437–459, Dekker, New York, 1999.Google Scholar
  24. 24]
    A. Seidenberg, On the dimension theory of rings II, Pacific J. Math. 4 (1954), 603–614.MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25]
    H. Schülting, Über die Erzengendenanzahl invertier barer Ideale in Prüferringen, Comm. Algebra 7 (1979), 1331–1349.MathSciNetzbMATHCrossRefGoogle Scholar
  26. [26]
    R. Swan, n-generator ideals in Prüfer domains, Pacific J. Math. 111 (1984), 433–446.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • Stefania Gabelli
    • 1
  • Evan Houston
    • 2
  1. 1.Dipartimento di MatematicaUniversità degli Studi Roma TreRomaItaly
  2. 2.Department of MathematicsUniversity of North Carolina at CharlotteCharlotteUSA

Personalised recommendations