Skip to main content

Part of the book series: Mathematics and Its Applications ((MAIA,volume 520))

Abstract

An E-ring is a ring that is isomorphic to its ring of additive endomorphisms under the left regular representation. That is, a ring R is an E-ring provided REnd(R+) under the map that sends rR to left multiplication by r. An R-module M is called an E-module over R if Hom R (R, M) = Hom Z (R, M). Despite their seemingly specialized definitions, E-rings, E-modules and related notions have played a major role in the theory of torsion-free abelian groups, and pop up with surprising frequency in other subject areas. Here are some examples:

  • [19] A torsion-free abelian group G is cyclic and projective as a module over its endomorphism ring if and only if G = RM, where R is an E-ring and M is an E-module over R.

  • [27] A strongly indecomposable torsion-free abelian group G of finite rank is finitely generated over its endomorphism ring if and only if G is quasi-isomorphic to the additive group of an E-ring.

  • [15] A strongly indecomposable torsion-free group G of finite rank is -uniserial as a module over its endomorphism ring only if G is a local, strongly homogeneous E-ring.

  • [2] A universal algebra A is κ-free if there is a subset X of A of car dinality κ such that every function from X to A extends uniquely to an endomorphism of A. A ring that is l-free as an abelian group is precisely an E-ring (with X = {1}).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Arnold, R.S. Pierce, J.D. Reid, C. Vinsonhaler and W. Wickless, Torsion-free abelian groups of finite rank projective as modules over their endomorphism rings, J. Algebra 71(1981), 1–10.

    Article  MathSciNet  MATH  Google Scholar 

  2. P. Bankston and R. Schutt, On minimally free algebras, Can. J. Math. 37(1985), 963–978.

    Article  MathSciNet  MATH  Google Scholar 

  3. R.A. Beaumont and R.S. Pierce, Torsion-free rings, Illinois J. Math. 5(1961), 61–98.

    MathSciNet  MATH  Google Scholar 

  4. R.A. Beaumont and R.S. Pierce, Subrings of algebraic number fields, Acta. Sci. Math., (Szeged) 22(1961), 202–216.

    MathSciNet  MATH  Google Scholar 

  5. R.A. Bowshell and P. Schultz, Unital rings whose additive endomorphisms commute, Math. Ann. 228 (1977), 197–214.

    Article  MathSciNet  MATH  Google Scholar 

  6. A.L.S. Corner, Every countable reduced torsion-free ring is an endomorphism ring, Proc. London Math. Soc. 13(1963), 687–710.

    Article  MathSciNet  MATH  Google Scholar 

  7. A.L.S. Corner and R. Göbel, Prescribing endomorphism algebras, Proc. London Math. Soc. 50(3) (1985), 447–479.

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Dugas, Large E-modules exist, J. Algebra 142(1991), 405–413.

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Dugas and R. Göbel, Every cotorsion-free ring is an endomorphism ring, Proc. London Math. Soc. 45(1982), 319–336.

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Dugas, A. Mader and C. Vinsonhaler, Large E-rings exist, J. Algebra 108(1987), 88–101.

    Article  MathSciNet  MATH  Google Scholar 

  11. T.G. Faticoni, Each countable reduced torsion-free commutative ring is a pure subring of an E-ring, Comm. in Algebra 15(1987), 2545–2564.

    Article  MathSciNet  MATH  Google Scholar 

  12. S. Feigelstock, J. Hausen, and R. Raphael, Abelian groups mapping onto their endomorphism rings, preprint.

    Google Scholar 

  13. L. Fuchs, Infinite Abelian Groups, Vols. I and II, Academic Press, New York, 1970, 1973.

    MATH  Google Scholar 

  14. R. Göbel and S. Shelah, Generalized E-rings, to appear.

    Google Scholar 

  15. J. Hausen, Finite rank torsion-free abelian groups uniserial over their endomorphism rings, Proc. Amer. Math. Soc. 93(1985), 227–232.

    Article  MathSciNet  MATH  Google Scholar 

  16. J. Hausen, E-transitive torsion-free abelian groups, J. Algebra 107(1987), 17–27.

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Hausen and J.A. Johnson, A note on constructing E-rings, Publ. Math. Debrecen 38(1991), 33–38.

    MathSciNet  MATH  Google Scholar 

  18. A. Mader and C. Vinsonhaler, Torsion-free E-modules, J. Algebra 115(1988), 401–411.

    Article  MathSciNet  MATH  Google Scholar 

  19. G.P. Niedzwecki and J.D. Reid, Abelian groups projective over their endomorphism rings, J. Algebra 159 (1993), 139–149.

    Article  MathSciNet  MATH  Google Scholar 

  20. R.S. Pierce, Associative Algebras, Graduate Texts in Mathematics 88, Springer-Verlag, New York, 1982.

    Book  Google Scholar 

  21. R.S. Pierce, Subrings of simple algebras, Michigan Math. J. 7(1960), 241–243.

    Article  MathSciNet  MATH  Google Scholar 

  22. R.S. Pierce, E-modules, Abelian Group Theory, Contemporary Mathematics 87 (1989), 221–240.

    Article  MathSciNet  Google Scholar 

  23. R.S. Pierce, Realizing Galois fields, Proc. Udine Conf. on Abelian groups and Modules, Springer-Verlag, Vienna (1984), 291–304.

    Google Scholar 

  24. R.S. Pierce and C. Vinsonhaler, Realizing algebraic number fields, Abelian Group Theory, Proceedings, Honolulu 1982, Lecture Notes in Math. #1006, Springer-Verlag, Berlin, 1983.

    Google Scholar 

  25. R.S. Pierce and C. Vinsonhaler, Classifying E-rings, Comm. in Algebra 19(1991), 615–653.

    Article  MathSciNet  MATH  Google Scholar 

  26. R.S. Pierce and C. Vinsonhaler, Carriers of torsion-free groups, Rend. Sem. Mat. Univ. Padova 84(1990), 263–281.

    MathSciNet  MATH  Google Scholar 

  27. J.D. Reid, Abelian groups finitely generated over their endomorphism rings, Abelian Group Theory, Lecture Notes in Mathematics 874(1981), 41–52.

    Article  Google Scholar 

  28. P. Schultz, The endomorphism ring of the additive group of a ring, J. Austral. Math. Soc. 15(1973), 60–69.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vinsonhaler, C. (2000). E-Rings and Related Structures. In: Chapman, S.T., Glaz, S. (eds) Non-Noetherian Commutative Ring Theory. Mathematics and Its Applications, vol 520. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3180-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3180-4_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4835-9

  • Online ISBN: 978-1-4757-3180-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics