Skip to main content

Part of the book series: Mathematics and Its Applications ((MAIA,volume 520))

Abstract

We first give some informations in order to situate t-closedness in the context of literature. The notion of t-closedness originates in K-theory and more specifically in the study of Picard groups Pic(R[X]) and Pic (R [X, X -1]) where R is a commutative ring. Extending works of Traverso [34], Gilmer, Heitmann [9] and others, Rush gave a characterization for a reduced ring R with a finite minimal spectrum to verify Pic(R) = Pic(R[X]) [29]. To be more explicit, Pic(R) = Pic(R[X]) if and only if R is seminormal in the total quotient ring Tot(R) of R, that is to say if a ∈ Tot(R) and a 2, a 3R then aR. Later on, Swan succeeded in giving a general theory by introducing the notion of seminormal ring [33]. A ring R is called seminormal if whenever b, cR satisfy b 3 = c 2, there is some tR such that b = t 2, c = t 3 . A seminormal ring is reduced as Costa showed. Then if R is reduced, Pic(R) = Pic(R[X]) holds if and only if R is seminormal. Now a ring R is called quasinormal if Pic(R) = Pic (R [X, X -1]). This notion was studied by Bass-Murthy [4], Greco [10] and Rush [30]. It is natural to ask whether quasinormality of a ring can be characterized by a condition similar to seminormality. To this end, Asanuma introduced u-closedness for rings [3]. A ring R is u-closed when a ∈ Tot(R) and a 2a, a 3a 2R imply aR. Asanuma showed that a one-dimensional noetherian integral domain R is quasinormal if and only if R is seminormal and u-closed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. F. Anderson, D. E. Dobbs and J. A. Huckaba, “On seminormal overrings”, Comm. in Algebra. 10 (1982) 1421–1448.

    Article  MathSciNet  MATH  Google Scholar 

  2. T. Akiba, “Remarks on flat and relatively seminormal pairs”, Kobe J. Math. 6 (1989) 217–222.

    MathSciNet  MATH  Google Scholar 

  3. T. Asanuma, unpublished.

    Google Scholar 

  4. H. Bass and M.P. Murthy, “Grothendieck groups and Picard groups of abelian group rings”, Ann. of Math. 86 (1976) 16–73.

    Article  MathSciNet  Google Scholar 

  5. D. E. Dobbs and T. Ishikawa, “On seminormal underrings”, Tokyo J. Math. 10 (1987) 157–159.

    Article  MathSciNet  MATH  Google Scholar 

  6. D. E. Dobbs, “On seminormal subrings”, Math. Japonica 32 (1987) 11–15.

    MathSciNet  MATH  Google Scholar 

  7. D. Ferrand and J. P. Olivier, “Homomorphismes minimaux d’anneaux”, J. Algebra 16 (1970) 461–471.

    Article  MathSciNet  MATH  Google Scholar 

  8. L. Gillman and M. Jerison, “Rings of continuous functions”, Van Nostrand, Princeton, Toronto, Melbourne, London (1960).

    MATH  Google Scholar 

  9. R. Gilmer and R. Heitmann, “On Pic R[X] for R seminormal”, J. Pure Appl. Algebra 16 (1980) 251–257.

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Greco, “Seminormality and quasinormality of group rings”, J. Pure Appl. Algebra 18 (1980) 129–142.

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Grothendieck and J. Dieudonné, Eléments de Géométrie Algébrique I, Springer Verlag, Berlin, Heidelberg, New York (1971).

    MATH  Google Scholar 

  12. M. Hochster, “Totally integrally closed rings and extremal spaces”, Pacific J. Math 32 (1970) 767–779.

    Article  MathSciNet  MATH  Google Scholar 

  13. Y. Koyama, T. Sugatani and K. Yoshida, “Some remarks on divisorial and seminormal overrings”, Comm. in Algebra 13 (1985) 795–810.

    Article  MathSciNet  MATH  Google Scholar 

  14. N. Onoda and K. Yoshida, “Remarks on quasinormal rings”, J. Pure Appl. Algebra 33 (1984) 59–67.

    Article  MathSciNet  MATH  Google Scholar 

  15. N. Onoda, T. Sugatani and K. Yoshida, “Local quasinormality and closedness type criteria”, Houston J. Math. 11 (1985) 247–256.

    MathSciNet  MATH  Google Scholar 

  16. G. Picavet, “Ultrafiltres sur un espace spectral. Anneaux de Baer. Anneaux à spectre minimal compact”, Math. Scand. 46 (1980) 23–53.

    MathSciNet  MATH  Google Scholar 

  17. G. Picavet, “Deux remarques sur la seminormalité”, Ital. J. Pure Appl. Math 1 (1997) 101–108.

    MathSciNet  MATH  Google Scholar 

  18. G. Picavet, “Totally t-closed rings”, J. Pure Appl. Algebra 115 (1997) 87–106.

    Article  MathSciNet  MATH  Google Scholar 

  19. G. Picavet, “Anodality”, Comm. in Algebra 26 (1998) 345–393.

    Article  MathSciNet  MATH  Google Scholar 

  20. G. Picavet, “Seminormal or t-closed schemes and Rees rings”, Algebras and Representation theory 11 (1999) 255–309.

    MathSciNet  Google Scholar 

  21. G. Picavet and M. Picavet-L’Hermitte, “Morphismes t-clos”, Comm. in Algebra 21 (1993) 179–219.

    Article  MathSciNet  MATH  Google Scholar 

  22. G. Picavet and M. Picavet-L’Hermitte, “Anneaux t-clos”, Comm. in Algebra 23 (1995) 2643–2677.

    Article  MathSciNet  MATH  Google Scholar 

  23. G. Picavet and M. Picavet-L’Hermitte, “Closure along an admissible subset, seminormality and t-closedness”, to appear.

    Google Scholar 

  24. M. Picavet-L’Hermitte, “Decomposition of order morphisms into minimal morphisms”, Math. J. Toyama Univ. 19 (1996) 17–45.

    MathSciNet  MATH  Google Scholar 

  25. M. Picavet-L’Hermitte, “t-closed pairs”, in Commutative Ring Theory Lectures notes in pure and appl. math., 185, Dekker, New York (1996), pp. 401–415.

    Google Scholar 

  26. M. Picavet-L’Hermitte, “When is ℤ[α] seminormal or t-closed ?”, Boll. U.M.I. 8 (1999) 189–217.

    MathSciNet  Google Scholar 

  27. M. Picavet-L’Hermitte, “Seminormality and t-closedness of algebraic orders”, in Advances in Commutative Ring Theory Lectures notes in pure and appl. math., 205, Dekker, New York (1999) 521–540.

    Google Scholar 

  28. M. Picavet-L’Hermitte, “Weak normality and t-closedness”, to appear in Comm. in Algebra.

    Google Scholar 

  29. D. E. Rush, “Seminormality”, J. Algebra 67 (1980) 377–384.

    Article  MathSciNet  MATH  Google Scholar 

  30. D. E. Rush, “Picard groups in abelian group rings”, J. Pure Appl. Algebra 26 (1982) 101–114.

    Article  MathSciNet  MATH  Google Scholar 

  31. P. Samuel, “Séminaire sur les épimorphismes”, Secrétariat Mathématique Paris (1967–1968).

    Google Scholar 

  32. T. Sugatani and K. Yoshida, “On t-closures”, C. R. Math. Rep. Acad. Sci. Canada 6

    Google Scholar 

  33. 55–59.

    Google Scholar 

  34. R. G. Swan, “On seminormality”, J. Algebra 67 (1980) 210–229.

    Article  MathSciNet  MATH  Google Scholar 

  35. C. Traverso, “Seminormality and Picard group”, Ann. Scuola Norm. Sup. Pisa 24 (1970) 585–595.

    MathSciNet  MATH  Google Scholar 

  36. H. Yanagihara, “On an intrinsic definition of weakly normal rings”, Kobe J. Math. 2

    Google Scholar 

  37. 89–98.

    Google Scholar 

  38. C. A. Weibel, “Pic is a contracted functor”, Invent. Math. 103 (1991) 351–377.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Picavet, G., Picavet-L’Hermitte, M. (2000). T-Closedness. In: Chapman, S.T., Glaz, S. (eds) Non-Noetherian Commutative Ring Theory. Mathematics and Its Applications, vol 520. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3180-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3180-4_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4835-9

  • Online ISBN: 978-1-4757-3180-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics