Skip to main content

Angiography of Congenital Heart Disease

  • Chapter

Abstract

Comprehensive review of physical principles of roentgenology is beyond the scope of this chapter(1–3). The following is a brief introduction to the basic principles on roentgenology for the cardiologists who perform catheterizations and interventional procedures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Curry TS, Dowdey JE, Murry RC. Christensen’s introduction to the physics of diagnostic radiology. In: 4th ed. Philadelphia, PA: Lea and Febiger, 1990

    Google Scholar 

  2. Sprawls P. The physical principles of diagnostic radiology. In: Rockville, MD: Aspen, 1977

    Google Scholar 

  3. Moore RJ. Imaging principles of cardiac angiography. In: Rockville, MD: Aspen, 1990

    Google Scholar 

  4. Nissen SE, Pepine CJ, Bashore TM. Cardiac angiography without cine film: erecting a “tower of Babel” in the cardiac catheterization laboratory. J Am Coll Cardiol 1994;24:834–837

    Article  Google Scholar 

  5. Stewart BK. Exchange media and networks for digital fluoroscopy and cineangiography. In: Syllabus: categorical course in physics. Oak Brook, IL: Radiological Society of North America, 1995:153–165

    Google Scholar 

  6. Holmes Jr. DJ. To compress or not, that is the question. Catheterization and Cardiovascular Diagnosis 1995;36:382

    Article  Google Scholar 

  7. Balter S. Guidelines for personnel radiation monitoring in the cardiac catheterization laboratory. Cathet Cardiovasc Diagn 1993;30:277–279

    Article  PubMed  CAS  Google Scholar 

  8. Johnson LW, Moore RJ, Balter S. Review of radiation safety in the cardiac catheterization laboratory. Cathet Cardiovasc Diagn 1992;25:186–194

    Article  PubMed  CAS  Google Scholar 

  9. Recommendations on limits for exposure to ionizing radiation. NCRP Report 91. In: National Council on Radiation Protection and Measurements, 1987

    Google Scholar 

  10. Merriam GR, Focht EF. A clinical study of radiation cataracts and the relationship to dose. Am J Roentgenol 1957;77:759–785

    Google Scholar 

  11. Schueler BA, Julsrud PR, Gray JE, et al. Radiation exposure and efficiency of exposure-reduction techniques during cardiac catheterization in children. Am J Roentgenol 1994;162:173–177

    Article  CAS  Google Scholar 

  12. Cagnon CH, Benedict SH, Mankovic NJ, et al. Exposure rates in high-level-control fluoroscopy for image enhancement. Radiology 1991;178:643–646

    PubMed  CAS  Google Scholar 

  13. Wagner LK, Eifel PJ, Geise RA. Potential biological effects following high x-ray dose interventional prodcedure. JVIR 1994;5:71–84

    Article  PubMed  CAS  Google Scholar 

  14. Aufrichtig R, Xue P, Thomas CW, et al. Perceptual comparison of pulse and continuous fluoroscopy. Med Phys 1994;21:245–256

    Article  PubMed  CAS  Google Scholar 

  15. Hernandez RJ, Goodsitt MM. Reduction of radiation dose in pediatric patients using pulsed fluoroscopy. Am J Roentgenol 1996;67:1247–1253

    Article  Google Scholar 

  16. Holmes Jr. DR, Wondrow MA, Gray JE, et al. Effect of pulsed progressive fluoroscopy on reduction of radiation dose in the cardiac catheterization laboratory. J Am Coll Cardiol 1990;15:150–162

    Article  Google Scholar 

  17. Parker JE, Bettmann MA. Angiographic contrast media. In: Taveras J, Ferrucci J, eds. Radiology: Diagnosis-Imaging-Intervention. Vol 2. Philadelphia: J. B. Lippincott Company, 1992:Ch 135A, pp 1–10.(Yucel K, ed. Vascular Radiology).

    Google Scholar 

  18. Dawson P, Howell M. The non-ionic dimers: a new class of contrast agents. Br J Radiology 1986;59:987–991

    Article  CAS  Google Scholar 

  19. Tveit K, Bolstad KD, Haugland T, et al. Iodixanol in cardioangiography. Acta Radiologica 1994;35:614–618

    PubMed  CAS  Google Scholar 

  20. Fischer HW. Catalog of intravascular contrast media. Radiology 1986;159:561–563

    PubMed  CAS  Google Scholar 

  21. Klow NE, Levorstad K, Berg KJ, et al. Iodixanol in cardioangiography in patients with coronary artery disease. Acta Radiologica 1993;34:72–77

    PubMed  CAS  Google Scholar 

  22. Cohan RH, Dunnick NR. Intravascular contrast media: adverse reaction. Am J Roentgenol 1987;149:665–670

    Article  CAS  Google Scholar 

  23. Parfrey PS, Griffiths SM, Barrett BJ, et al. Contrast material-induced renal failure in patients with diabetes mellitus, renal insufficiency, or both: a prospective controlled study. NEJM 1989;320:143–149

    Article  PubMed  CAS  Google Scholar 

  24. Cohen MD. A review of the toxicity of nonionic contrast agent in children. Invest Radiol 1993;28:S87-S93

    Article  PubMed  Google Scholar 

  25. Bettmann MA, Bourdillon PD, Gopalan R, et al. Contrast agents for cardiac angiography: effects of a nonionic agent vs a standard ionic agent. Radiology 1984;153:583–587

    PubMed  CAS  Google Scholar 

  26. Barrett BJ, Parfrey PS, Vavasour HM, et al. A comparison of nonionic, low-osmolality radiocontrast agents with ionic, high-osmolality agents during cardiac catheterization. NEJM 1992;326:431–436

    Article  PubMed  CAS  Google Scholar 

  27. Siegle RL. Rates of idiosyncratic reactions: Ionic versus nonionic contrast media. Invest Radiol 1993;28:S95-S98

    Article  PubMed  Google Scholar 

  28. Palmer FJ. The RACR survey of intravenous contrast media reactions: final report. Australas Radiol 1988;32:426–248

    Article  PubMed  CAS  Google Scholar 

  29. Katayama H, Yamaguchi K, Kozuka T, et al. Adverse reactions to ionic and nonionic contrast media: the report from the Japanese Committee on the safety of contrast media. Radiology 1990;175:621–628

    PubMed  CAS  Google Scholar 

  30. Verma R, Keane JF. Use of cutoff pigtail catheters with intraluminal guidewires in interventional procedures in congenital heart disease. Cathet Cardiôvasc Diagn 1994;33:85–88

    Article  PubMed  CAS  Google Scholar 

  31. Keane JF, McFaul R, Fellows K, et al. Balloon occlusion angiography in infancy: methodology, uses and limitations. Am J Cardiol 1985;56:495–497

    Article  PubMed  CAS  Google Scholar 

  32. Fiddler GI, Partridge JB. Balloon occlusion angiography in critically ill neonates. Cath Cardiovasc Diagn 1983;9:309–312

    Article  CAS  Google Scholar 

  33. Culham JAG. Physical principles of image formation and projections in angiocardiography. In: Freedom RM, Mawson JB, Yoo SJ, Benson LN, eds. Congenital Heart Disease. Vol 1. Armonk: Futura Publishing Company, 1997:39–93

    Google Scholar 

  34. Bargeron LM, Jr, Elliot LP, Soto B, et al. Axial cineangiography in congenital heart disease. Section I: Technical and anatomical considerations. Circulation 1977;56:1975–1083

    Article  Google Scholar 

  35. Elliot LP, Bargeron LM, Jr, Bream PR, et al. Axial cineangiography in congenital heart disease. Section II: Specific lesions. Circulation 1977;56:1084–1093

    Google Scholar 

  36. Fellows KE, Keane JF, Freed MD. Angled views in congenital heart disease. Circulation 1977;56:485–490

    Article  PubMed  CAS  Google Scholar 

  37. Freedom RM, Mawson JB, Yoo SJ, et al. Congenital Heart Disease. In: Armonk, NY: Futura Publishing Company, Inc., 1997: 1–662. vol 1).

    Google Scholar 

  38. Mandell VS, Lock JE, E MJ, et al. The “laidback” aortogram: an improved angiographic view for demonstration of coronary arteries in transposition of the great arteries. Am J Cardiol 1990;65:1379–1383

    Article  PubMed  CAS  Google Scholar 

  39. Yoo SJ, Burrows PE, Moes CAF, et al. Evaluation of cornary arterial patterns in complete transposition by laid-back aortography. Cardiol Young 1996;6:149–155

    Article  Google Scholar 

  40. Alpert BS, Culham JAG. A severe complication of pulmonary vein angiography. Brit Heart J 1979;41:727–729

    Article  PubMed  CAS  Google Scholar 

  41. Formanek A, Nath PH, Zollikofer C, et al. Selective coronary arteriography in children. Circulation 1980;61:84–94

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chung, T., Burrows, P.E. (2000). Angiography of Congenital Heart Disease. In: Lock, J.E., Keane, J.F., Perry, S.B. (eds) Diagnostic and Interventional Catheterization in Congenital Heart Disease. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3173-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3173-6_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-3175-0

  • Online ISBN: 978-1-4757-3173-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics