Hemodynamic Evaluation of Congenital Heart Disease
Chapter
Abstract
A fundamental understanding of basic instrumentation and cardiovascular physiology is essential to competently assess the hemodynamic status of patients with congenital heart disease. The following is a very superficial view of these topics and readers should consult any of a number of more detailed texts 1–3. The contents of this chapter are presented in the following sequence.
Keywords
Pulmonary Artery Mitral Valve Congenital Heart Disease Pulmonary Vein Atrial Pressure
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- 1.Bairn, DS, Grossman, W. Cardiac Catheterization, Angiography and Intervention. Baltimore: Williams & Wilkins, 1996.Google Scholar
- 2.Zimmerman, H.A., Intravascular Catheterization. Springfield, IL: Charles C. Thomas, 1966.Google Scholar
- 3.Yang, S.S., Bentivoglio, L.G., Maranhao, V. and Goldberg, H. From Cardiac Catheterization to Hemodynamic Parameters. Philadelphia: F.A. Davis Co., 1978.Google Scholar
- 4.Hale, S. Statical Essays. Vegetable Staticks, Vol. 11 (3rd ed.) London: W. Inrys and R. Maonday, 1738.Google Scholar
- 5.Adams, F.H. and Lind, J. Physiologic studies on the cardiovascular status of normal newborn infants. Pediatrics 19:431–37, 1957.PubMedGoogle Scholar
- 6.Emmanoulides, G.C., Moss, A.J., Duffie, E.R., Jr. and Adams, F.H. Pulmonary arterial pressure changes in human newborn infants from birth to 3 days of age. J. Pediatr. 65:327–33, 1964.CrossRefGoogle Scholar
- 7.Sproul, A. and Simpson, E. Stroke volume and related hemodynamic data in normal children. Pediatr. 33:912–18,1964.Google Scholar
- 8.James, L.S. and Rowe, R.D. The pattern of response of pulmonary and systemic arterial pressures in newborn and older infants to short periods of hypoxia. J. Pediatr. 51:5–11, 1957.PubMedCrossRefGoogle Scholar
- 9.Lucas, R.V., Jr., St. Gerne, J.W. Jr., Anderson, R.C., Adams, P. and Ferguson, D.J. Maturation of the pulmonary vascular bed. Am. J. Dis. Child. 101:467–75, 1961.Google Scholar
- 10.Rowe, R.D., and James, L.S. The normal pulmonary arterial pressure during the first year of life. J. Pediatr. 51:1–4, 1957.PubMedCrossRefGoogle Scholar
- 11.Kjellberg, S.R., Mannheimer, E., Rudhe, U. and Jonsson, B. Diagnosis of Congenital Heart Disease. Chicago: Year Book Publishers, 1955.Google Scholar
- 12.Cummings, G.R., Hemodynamics of supine bicycle exercise in “normal” children. Am. Heart J. 93:617–22, 1977.CrossRefGoogle Scholar
- 13.Lock, J.E., Einzig, S.A., and Moller, J.H. Hemodynamic responses to exercise in normal children. Am. J. Cardiol. 41:1278–84, 1978.PubMedCrossRefGoogle Scholar
- 14.Paton, A., Reynolds, T.B. and Sherlock, S. Assessment of portal venous hypertension by catheterization of hepatic vein. Lancet 1:918–21, 1953.PubMedCrossRefGoogle Scholar
- 15.Wagenvoort, CA., Heath, D. and Edwards, J.E. The pathology of the Pulmonary Vasculature. Springfield IL: Charles C. Thomas, 3–35, 1964.Google Scholar
- 16.Connolly, D.C., Kirklin, J.W. and Wood, E.H. The relationship between pulmonary artery wedge pressure and left atrial pressure in man. Circ. Res. 2:434–440, 1954.PubMedCrossRefGoogle Scholar
- 17.Hellens, H.K., Haynes, F.W. and Dexter, L. Pulmonary “capillary” pressure in man. J. Appl. Physiol. 2:24–29, 1949.Google Scholar
- 18.Werko, L., Varnaskas, E., Eliasch, H., Lagerlof, H., Senning, A. and Thomasson, B. Further evidence that the pulmonary capillary venous pressure pulse in man reflects cyclic pressure changes in the left atrium. Circ. Res. 1:337–39, 1953.PubMedCrossRefGoogle Scholar
- 19.Hawker, R.E. and Celermajer, J.M. Comparison of pulmonary artery and pulmonary venous wedge pressure in congenital heart disease. Br. Heart J. 35: 386–91, 1973.PubMedCrossRefGoogle Scholar
- 20.Adatia, I., Moore, P., Jonas R.A., Colan, S.D., Lock, J.E., Keane, J.F. Clinical course and hemodynamic observations after supra-annular mitral valve replacement in infants and children. J.Am. Coll. Cardiol. 29:1089–94, 1997.PubMedCrossRefGoogle Scholar
- 21.Levin, A.R., Spach, M.S., Boineau, J.P., Canent, R.V., Jr., Capp, M.P. and Jewett, P.H. Atrial pressure-flow dynamics in atrial septal defects (secundum type). Circulation 37:476–88, 1968.PubMedCrossRefGoogle Scholar
- 22.Shabetai, R., Fowler, N.O., and Guntheroth, W.G. The hemodynamics of cardiac tamponade and constrictive pericarditis. Am. J. Cardiol. 26:480–89, 1970.PubMedCrossRefGoogle Scholar
- 23.Meany, E., Shabetai, R., Bhargave, V., Shearer, M., Weider, C, Mangiardi, L.M., Smalling, R. and Peterson, K. Cardiac amyloidosis, constrictive pericarditis, and restrictive cardiomyopathy. Am. J. Cardiol. 38: 547–66, 1976.CrossRefGoogle Scholar
- 24.Bush, CA., Stang, J.M., Wooley, C.F. and Kilman, J.W. Occult constrictive pericardial disease. Diagnosis by rapid volume expansion and correction by pericardiectomy. Circulation 56:924–30, 1977.PubMedCrossRefGoogle Scholar
- 25.Brockenbrough, E.C, Braunwald, E., Morrow, A.G.: A hemodynamic technique for the detection of hypertrophic subaortic stenosis. Circulation 23:189–94, 1961.CrossRefGoogle Scholar
- 26.Schoenfeld, M.H., Palacios, I.F., Hutter, A.M., Jacoby, S.S., and Block, P.C. Underestimation of prosthetic mitral valve area: Role of transseptal catheterization in avoiding unnecessary repeat mitral valve surgery. J. Am. Coll. Cardiol. 5:1387–92, 1985.PubMedCrossRefGoogle Scholar
- 27.Van Slyke, D.D. and Neill, J.M. Blood gasses I. J. Biol. Chem. 61:524–84, 1942.Google Scholar
- 28.Rudolph, A.M. Cardiac catheterization and angiography. In Congenital Diseases of the Heart. Chicago: Year Book, 1974.Google Scholar
- 29.Jarmakani, J.M. Catheterization and Angiocardiography, and Heart Disease in Infants, Children, and Adolescents. Baltimore: Williams & Wilkins, 1983.Google Scholar
- 30.Rowe, R.D. Cardiac catheterization. In Heart Disease in Infancy and Childhood. New York: Macmillan, 1978.Google Scholar
- 31.Rudolph, A.M., and Cayler, G.C. Cardiac catheterization in infants and children. Pediatr. Clin. North Am. 5:907–43, 1958.PubMedGoogle Scholar
- 32.Freed, M.D., Miettinen, O., Nadas, A.S. Oximetric detection of intracardiac left-to-right shunts. Br. Heart J. 42:690–94, 1979.PubMedCrossRefGoogle Scholar
- 33.Rudolph, A.M. Distribution and regulation of blood flow in the fetal and neonatal lamb. Circ. Res. 57:811–21, 1985.PubMedCrossRefGoogle Scholar
- 34.Barratt-Boyes, B.G. and Wood, E.H. The oxygen saturation of blood in the venae cavae, right-heart chambers, and pulmonary vessels of healthy subjects. J. Lab. Clin. Med. 50:93–06, 1057.Google Scholar
- 35.Dexter, L., Haynes, F.W., Burwell, L.S., Eppinger, E.C, Sagerson, R.P. and Evans, J.M. Studies of congenital heart disease II. The pressure and oxygen content of blood in the right auricle, right ventricle, and pulmonary artery in control patients, with observations on the oxygen saturation and source of pulmonary “capillary” blood. J. Clin. Invest. 26:554–60, 1947.CrossRefGoogle Scholar
- 36.Fuhrman, B.P., Pokora, T.J., Bessinger, F.B., Jr. and Lucas, R.V., Jr. Hypercarbia in the infant with congenital cardiac disease. Pediatr. Cardiol. 2:245–50, 1982.PubMedCrossRefGoogle Scholar
- 37.Stewart, G.N. Researches on the circulation time and on the influences which affect it. IV: The output of the heart. J. Physiol. 22:159–83, 1987.Google Scholar
- 38.Kinsman, J.M., Moore, J.W., Hamilton, W.F. Studies on the circulation. I: Injection method. Physical and mathematical considerations. Am. J. Physiol. 89:322–39, 1929.Google Scholar
- 39.Hatle, L. and Angelson, B., Doppler Ultrasound in Cardiology. Philadelphia: Lea&Febiger, 1985.Google Scholar
- 40.Kolin, A. A new approach to electromagnetic blood flow determination by means of catheter in an external magnetic field. Proc. Soc. Nat. Acad. Sci. 65:521–27, 1970.CrossRefGoogle Scholar
- 41.Fick, A. Uber die Messung des Blutquantums in den Herzventrikeln. Sits der Physik-Med ges Wurtzberg, 1870, p. 16.Google Scholar
- 42.Van Slyke, D.D. and Neill, J.M. The determination of gases in blood and other solutions by vacuum extraction and manometric measurement. J. Biol. Chem. 61:523–84, 1924.Google Scholar
- 43.Scholander, P.F. Analyzer for accurate estimation of respiratory gases in one half cubic centimeter samples. J. Biol. Chem. 167: 235–50, 1947.PubMedGoogle Scholar
- 44.Lister, G., Hoffman, J.I.E. and Rudolph, A.M. Oxygen uptake in infants and children: A simple method for measurement. Pediatrics 53: 656–62, 1974.PubMedGoogle Scholar
- 45.Vaughan III V.C.: Growth and Development in Nelson, Textbook of Pediatrics: Philadelphia W.B. Saunders pg. 37, 1975.Google Scholar
- 46.LaFarge, CG. and Miettinen, O.S. The estimation of oxygen consumption. Cardiovasc. Res. 4:23–30, 1970.PubMedCrossRefGoogle Scholar
- 47.Kappagoda, CT., Greenwood, P., Macartney, F.J. and Linden, R.J. Oxygen consumption in children with congenital disease of the heart. Clin. Sei. Mol. Med. 45:107–14, 1973.Google Scholar
- 48.Baum, D., Brown, A.C., Church, S.C. Effect of sedation on oxygen consumption of children undergoing cardiac catheterization. Pediatrics 39: 891–95, 1967.PubMedGoogle Scholar
- 49.Wessel, H.U., Paul, M.H., James, G.W. and Grahn, A.R. Limitations of thermal dilution curves for cardiac output determinations. J. Appl. Physiol. 30:643–52, 1971.PubMedGoogle Scholar
- 50.Freed, M.D. and Keane, J.F. Cardiac output measured by thermodilution in infants and children. J. Pediatr. 92:39–42, 1978.PubMedCrossRefGoogle Scholar
- 51.Fox, I.J. and Wood, E.H. Indocyanine green: Physical and physiological properties. Proc. Mayo Clin. 35:732–44, 1960.Google Scholar
- 52.Vogel, J.H.K., Grover, R.F. and Blount, S.G. Jr. Detection of the small intracardiac shunt with the hydrogen electrode. A highly sensitive and simple technique. Am. Heart J. 64:13–21,1962.CrossRefGoogle Scholar
- 53.Amplatz, K., Jeffrey, R.E., Gobel, F.L., Wang, Y., Gathman, G.E., Moller, J.H. and Lucas, R.V. Jr. The freon test: A new sensitive test for the detection of small cardiac shunts. Circulation 39:551–56, 1969.PubMedCrossRefGoogle Scholar
- 54.Frommer, P.L., Pfaff, W.W. and Braunwald, E. The use of ascorbate dilution curves in cardiovascular diagnosis. Application of a technique for direct intravascular detection of indicator. Circulation 24: 1227–34, 1961.CrossRefGoogle Scholar
- 55.Bloomfield, D.A. Dye Curves. Baltimore: University Park Press, 1974.Google Scholar
- 56.Heymann, M.D., Payne, B.D., Hoffman, J.I.E. and Rudolph, A.M. Blood flow measurements with radionuclide-labelled particles. Prog. Cardiovasc. Dis. 20:55–79, 1977.PubMedCrossRefGoogle Scholar
- 57.Einzig, S., Nicoloff, D.M. and Lucas, R.V., Jr. Myocardial perfusion abnormalities in carbon monoxide poisoned dog. Can. J. Physiol. Pharmacol. 58:396–405, 1980.PubMedCrossRefGoogle Scholar
- 58.Carter, S.A., Bajec, S.F., Yannicelli, E. and Wood, E.H. Estimation of left to right shunts from arterial dilution curves. J. Lab. Clin. Med. 55:77–88, 1960.PubMedGoogle Scholar
- 59.Victoria, B.E. and Gessner, LH. A simplified method for quantitating left to right shunts from arterial dilution curves. Circulation 51:530–34, 1975.CrossRefGoogle Scholar
- 60.Thorburn, G.D. Estimates of cardiac output from forward part of indicator dilution curves. J. Appl. Physiol. 16:891–95, 1961.PubMedGoogle Scholar
- 61.Kulik, T.J. and Lock, J.E. The assessment of pulmonary vascular tone: A review of experimental methodologies. Pediatr. Pharmacol. 4:73–83,1984.Google Scholar
- 62.Gorlin, R. and Gorlin, G. Hydraulic formula for calculation of area of stenotic mitral valves, other valves, and central circulatory shunts. Am. Heart J. 41:1–29, 1951.PubMedCrossRefGoogle Scholar
- 63.Bache, R.J., Wang, Y. and Jorgeson, C.R. Hemodynamic effects of exercise in isolated valvular aortic stenosis. Circulation 44: 1003–13, 1971.PubMedCrossRefGoogle Scholar
Copyright information
© Springer Science+Business Media New York 2000