Skip to main content

Abstract

A fundamental understanding of basic instrumentation and cardiovascular physiology is essential to competently assess the hemodynamic status of patients with congenital heart disease. The following is a very superficial view of these topics and readers should consult any of a number of more detailed texts 1–3. The contents of this chapter are presented in the following sequence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bairn, DS, Grossman, W. Cardiac Catheterization, Angiography and Intervention. Baltimore: Williams & Wilkins, 1996.

    Google Scholar 

  2. Zimmerman, H.A., Intravascular Catheterization. Springfield, IL: Charles C. Thomas, 1966.

    Google Scholar 

  3. Yang, S.S., Bentivoglio, L.G., Maranhao, V. and Goldberg, H. From Cardiac Catheterization to Hemodynamic Parameters. Philadelphia: F.A. Davis Co., 1978.

    Google Scholar 

  4. Hale, S. Statical Essays. Vegetable Staticks, Vol. 11 (3rd ed.) London: W. Inrys and R. Maonday, 1738.

    Google Scholar 

  5. Adams, F.H. and Lind, J. Physiologic studies on the cardiovascular status of normal newborn infants. Pediatrics 19:431–37, 1957.

    PubMed  CAS  Google Scholar 

  6. Emmanoulides, G.C., Moss, A.J., Duffie, E.R., Jr. and Adams, F.H. Pulmonary arterial pressure changes in human newborn infants from birth to 3 days of age. J. Pediatr. 65:327–33, 1964.

    Article  Google Scholar 

  7. Sproul, A. and Simpson, E. Stroke volume and related hemodynamic data in normal children. Pediatr. 33:912–18,1964.

    CAS  Google Scholar 

  8. James, L.S. and Rowe, R.D. The pattern of response of pulmonary and systemic arterial pressures in newborn and older infants to short periods of hypoxia. J. Pediatr. 51:5–11, 1957.

    Article  PubMed  CAS  Google Scholar 

  9. Lucas, R.V., Jr., St. Gerne, J.W. Jr., Anderson, R.C., Adams, P. and Ferguson, D.J. Maturation of the pulmonary vascular bed. Am. J. Dis. Child. 101:467–75, 1961.

    Google Scholar 

  10. Rowe, R.D., and James, L.S. The normal pulmonary arterial pressure during the first year of life. J. Pediatr. 51:1–4, 1957.

    Article  PubMed  CAS  Google Scholar 

  11. Kjellberg, S.R., Mannheimer, E., Rudhe, U. and Jonsson, B. Diagnosis of Congenital Heart Disease. Chicago: Year Book Publishers, 1955.

    Google Scholar 

  12. Cummings, G.R., Hemodynamics of supine bicycle exercise in “normal” children. Am. Heart J. 93:617–22, 1977.

    Article  Google Scholar 

  13. Lock, J.E., Einzig, S.A., and Moller, J.H. Hemodynamic responses to exercise in normal children. Am. J. Cardiol. 41:1278–84, 1978.

    Article  PubMed  CAS  Google Scholar 

  14. Paton, A., Reynolds, T.B. and Sherlock, S. Assessment of portal venous hypertension by catheterization of hepatic vein. Lancet 1:918–21, 1953.

    Article  PubMed  CAS  Google Scholar 

  15. Wagenvoort, CA., Heath, D. and Edwards, J.E. The pathology of the Pulmonary Vasculature. Springfield IL: Charles C. Thomas, 3–35, 1964.

    Google Scholar 

  16. Connolly, D.C., Kirklin, J.W. and Wood, E.H. The relationship between pulmonary artery wedge pressure and left atrial pressure in man. Circ. Res. 2:434–440, 1954.

    Article  PubMed  CAS  Google Scholar 

  17. Hellens, H.K., Haynes, F.W. and Dexter, L. Pulmonary “capillary” pressure in man. J. Appl. Physiol. 2:24–29, 1949.

    Google Scholar 

  18. Werko, L., Varnaskas, E., Eliasch, H., Lagerlof, H., Senning, A. and Thomasson, B. Further evidence that the pulmonary capillary venous pressure pulse in man reflects cyclic pressure changes in the left atrium. Circ. Res. 1:337–39, 1953.

    Article  PubMed  CAS  Google Scholar 

  19. Hawker, R.E. and Celermajer, J.M. Comparison of pulmonary artery and pulmonary venous wedge pressure in congenital heart disease. Br. Heart J. 35: 386–91, 1973.

    Article  PubMed  CAS  Google Scholar 

  20. Adatia, I., Moore, P., Jonas R.A., Colan, S.D., Lock, J.E., Keane, J.F. Clinical course and hemodynamic observations after supra-annular mitral valve replacement in infants and children. J.Am. Coll. Cardiol. 29:1089–94, 1997.

    Article  PubMed  CAS  Google Scholar 

  21. Levin, A.R., Spach, M.S., Boineau, J.P., Canent, R.V., Jr., Capp, M.P. and Jewett, P.H. Atrial pressure-flow dynamics in atrial septal defects (secundum type). Circulation 37:476–88, 1968.

    Article  PubMed  CAS  Google Scholar 

  22. Shabetai, R., Fowler, N.O., and Guntheroth, W.G. The hemodynamics of cardiac tamponade and constrictive pericarditis. Am. J. Cardiol. 26:480–89, 1970.

    Article  PubMed  CAS  Google Scholar 

  23. Meany, E., Shabetai, R., Bhargave, V., Shearer, M., Weider, C, Mangiardi, L.M., Smalling, R. and Peterson, K. Cardiac amyloidosis, constrictive pericarditis, and restrictive cardiomyopathy. Am. J. Cardiol. 38: 547–66, 1976.

    Article  Google Scholar 

  24. Bush, CA., Stang, J.M., Wooley, C.F. and Kilman, J.W. Occult constrictive pericardial disease. Diagnosis by rapid volume expansion and correction by pericardiectomy. Circulation 56:924–30, 1977.

    Article  PubMed  CAS  Google Scholar 

  25. Brockenbrough, E.C, Braunwald, E., Morrow, A.G.: A hemodynamic technique for the detection of hypertrophic subaortic stenosis. Circulation 23:189–94, 1961.

    Article  Google Scholar 

  26. Schoenfeld, M.H., Palacios, I.F., Hutter, A.M., Jacoby, S.S., and Block, P.C. Underestimation of prosthetic mitral valve area: Role of transseptal catheterization in avoiding unnecessary repeat mitral valve surgery. J. Am. Coll. Cardiol. 5:1387–92, 1985.

    Article  PubMed  CAS  Google Scholar 

  27. Van Slyke, D.D. and Neill, J.M. Blood gasses I. J. Biol. Chem. 61:524–84, 1942.

    Google Scholar 

  28. Rudolph, A.M. Cardiac catheterization and angiography. In Congenital Diseases of the Heart. Chicago: Year Book, 1974.

    Google Scholar 

  29. Jarmakani, J.M. Catheterization and Angiocardiography, and Heart Disease in Infants, Children, and Adolescents. Baltimore: Williams & Wilkins, 1983.

    Google Scholar 

  30. Rowe, R.D. Cardiac catheterization. In Heart Disease in Infancy and Childhood. New York: Macmillan, 1978.

    Google Scholar 

  31. Rudolph, A.M., and Cayler, G.C. Cardiac catheterization in infants and children. Pediatr. Clin. North Am. 5:907–43, 1958.

    PubMed  CAS  Google Scholar 

  32. Freed, M.D., Miettinen, O., Nadas, A.S. Oximetric detection of intracardiac left-to-right shunts. Br. Heart J. 42:690–94, 1979.

    Article  PubMed  CAS  Google Scholar 

  33. Rudolph, A.M. Distribution and regulation of blood flow in the fetal and neonatal lamb. Circ. Res. 57:811–21, 1985.

    Article  PubMed  CAS  Google Scholar 

  34. Barratt-Boyes, B.G. and Wood, E.H. The oxygen saturation of blood in the venae cavae, right-heart chambers, and pulmonary vessels of healthy subjects. J. Lab. Clin. Med. 50:93–06, 1057.

    Google Scholar 

  35. Dexter, L., Haynes, F.W., Burwell, L.S., Eppinger, E.C, Sagerson, R.P. and Evans, J.M. Studies of congenital heart disease II. The pressure and oxygen content of blood in the right auricle, right ventricle, and pulmonary artery in control patients, with observations on the oxygen saturation and source of pulmonary “capillary” blood. J. Clin. Invest. 26:554–60, 1947.

    Article  CAS  Google Scholar 

  36. Fuhrman, B.P., Pokora, T.J., Bessinger, F.B., Jr. and Lucas, R.V., Jr. Hypercarbia in the infant with congenital cardiac disease. Pediatr. Cardiol. 2:245–50, 1982.

    Article  PubMed  CAS  Google Scholar 

  37. Stewart, G.N. Researches on the circulation time and on the influences which affect it. IV: The output of the heart. J. Physiol. 22:159–83, 1987.

    Google Scholar 

  38. Kinsman, J.M., Moore, J.W., Hamilton, W.F. Studies on the circulation. I: Injection method. Physical and mathematical considerations. Am. J. Physiol. 89:322–39, 1929.

    Google Scholar 

  39. Hatle, L. and Angelson, B., Doppler Ultrasound in Cardiology. Philadelphia: Lea&Febiger, 1985.

    Google Scholar 

  40. Kolin, A. A new approach to electromagnetic blood flow determination by means of catheter in an external magnetic field. Proc. Soc. Nat. Acad. Sci. 65:521–27, 1970.

    Article  CAS  Google Scholar 

  41. Fick, A. Uber die Messung des Blutquantums in den Herzventrikeln. Sits der Physik-Med ges Wurtzberg, 1870, p. 16.

    Google Scholar 

  42. Van Slyke, D.D. and Neill, J.M. The determination of gases in blood and other solutions by vacuum extraction and manometric measurement. J. Biol. Chem. 61:523–84, 1924.

    Google Scholar 

  43. Scholander, P.F. Analyzer for accurate estimation of respiratory gases in one half cubic centimeter samples. J. Biol. Chem. 167: 235–50, 1947.

    PubMed  CAS  Google Scholar 

  44. Lister, G., Hoffman, J.I.E. and Rudolph, A.M. Oxygen uptake in infants and children: A simple method for measurement. Pediatrics 53: 656–62, 1974.

    PubMed  CAS  Google Scholar 

  45. Vaughan III V.C.: Growth and Development in Nelson, Textbook of Pediatrics: Philadelphia W.B. Saunders pg. 37, 1975.

    Google Scholar 

  46. LaFarge, CG. and Miettinen, O.S. The estimation of oxygen consumption. Cardiovasc. Res. 4:23–30, 1970.

    Article  PubMed  CAS  Google Scholar 

  47. Kappagoda, CT., Greenwood, P., Macartney, F.J. and Linden, R.J. Oxygen consumption in children with congenital disease of the heart. Clin. Sei. Mol. Med. 45:107–14, 1973.

    CAS  Google Scholar 

  48. Baum, D., Brown, A.C., Church, S.C. Effect of sedation on oxygen consumption of children undergoing cardiac catheterization. Pediatrics 39: 891–95, 1967.

    PubMed  CAS  Google Scholar 

  49. Wessel, H.U., Paul, M.H., James, G.W. and Grahn, A.R. Limitations of thermal dilution curves for cardiac output determinations. J. Appl. Physiol. 30:643–52, 1971.

    PubMed  CAS  Google Scholar 

  50. Freed, M.D. and Keane, J.F. Cardiac output measured by thermodilution in infants and children. J. Pediatr. 92:39–42, 1978.

    Article  PubMed  CAS  Google Scholar 

  51. Fox, I.J. and Wood, E.H. Indocyanine green: Physical and physiological properties. Proc. Mayo Clin. 35:732–44, 1960.

    CAS  Google Scholar 

  52. Vogel, J.H.K., Grover, R.F. and Blount, S.G. Jr. Detection of the small intracardiac shunt with the hydrogen electrode. A highly sensitive and simple technique. Am. Heart J. 64:13–21,1962.

    Article  Google Scholar 

  53. Amplatz, K., Jeffrey, R.E., Gobel, F.L., Wang, Y., Gathman, G.E., Moller, J.H. and Lucas, R.V. Jr. The freon test: A new sensitive test for the detection of small cardiac shunts. Circulation 39:551–56, 1969.

    Article  PubMed  CAS  Google Scholar 

  54. Frommer, P.L., Pfaff, W.W. and Braunwald, E. The use of ascorbate dilution curves in cardiovascular diagnosis. Application of a technique for direct intravascular detection of indicator. Circulation 24: 1227–34, 1961.

    Article  Google Scholar 

  55. Bloomfield, D.A. Dye Curves. Baltimore: University Park Press, 1974.

    Google Scholar 

  56. Heymann, M.D., Payne, B.D., Hoffman, J.I.E. and Rudolph, A.M. Blood flow measurements with radionuclide-labelled particles. Prog. Cardiovasc. Dis. 20:55–79, 1977.

    Article  PubMed  CAS  Google Scholar 

  57. Einzig, S., Nicoloff, D.M. and Lucas, R.V., Jr. Myocardial perfusion abnormalities in carbon monoxide poisoned dog. Can. J. Physiol. Pharmacol. 58:396–405, 1980.

    Article  PubMed  CAS  Google Scholar 

  58. Carter, S.A., Bajec, S.F., Yannicelli, E. and Wood, E.H. Estimation of left to right shunts from arterial dilution curves. J. Lab. Clin. Med. 55:77–88, 1960.

    PubMed  CAS  Google Scholar 

  59. Victoria, B.E. and Gessner, LH. A simplified method for quantitating left to right shunts from arterial dilution curves. Circulation 51:530–34, 1975.

    Article  Google Scholar 

  60. Thorburn, G.D. Estimates of cardiac output from forward part of indicator dilution curves. J. Appl. Physiol. 16:891–95, 1961.

    PubMed  CAS  Google Scholar 

  61. Kulik, T.J. and Lock, J.E. The assessment of pulmonary vascular tone: A review of experimental methodologies. Pediatr. Pharmacol. 4:73–83,1984.

    CAS  Google Scholar 

  62. Gorlin, R. and Gorlin, G. Hydraulic formula for calculation of area of stenotic mitral valves, other valves, and central circulatory shunts. Am. Heart J. 41:1–29, 1951.

    Article  PubMed  CAS  Google Scholar 

  63. Bache, R.J., Wang, Y. and Jorgeson, C.R. Hemodynamic effects of exercise in isolated valvular aortic stenosis. Circulation 44: 1003–13, 1971.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Keane, J.F., Lock, J.E. (2000). Hemodynamic Evaluation of Congenital Heart Disease. In: Lock, J.E., Keane, J.F., Perry, S.B. (eds) Diagnostic and Interventional Catheterization in Congenital Heart Disease. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3173-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3173-6_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-3175-0

  • Online ISBN: 978-1-4757-3173-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics