Skip to main content

Modern Heuristic Search Methods for the Steiner Tree Problem in Graphs

  • Chapter
Advances in Steiner Trees

Part of the book series: Combinatorial Optimization ((COOP,volume 6))

Abstract

Given an edge-weighted graph, the Steiner tree problem in graphs is to determine a minimum cost subgraph spanning a set of specified vertices. More specifically, consider an undirected connected graph G = (V, E) with vertex set V, edge set E, and nonnegative weights associated with the edges. Given a set Q ⊆ V of basic vertices Steiner’s problem in graphs (SP) is to find a minimum cost subgraph of G such that there exists a path in the subgraph between every pair of basic (or required) vertices. In order to achieve this minimum cost subgraph additional vertices from the set S:= V— Q, socalled Steiner vertices, may be included. Since all edge weights are assumed to be nonnegative, there is an optimal solution which is a tree, a so-called Steiner tree.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.J. Alexander and G. Robins, New performance-driven FPGA routing algoritluns, Working Paper, University of Virginia (1995).

    Google Scholar 

  2. A.A. Andreatta, S.E.R. Carvalho and C.C. Ribeiro, An object-oriented framework for local search heuristics, Working Paper, Catholic University of Rio de Janeiro (1998).

    Google Scholar 

  3. S. Arora, Polynomial-time approximation schemes for Euclidean TSP and other geometric problems, Princeton University (1996), to appear in Journal of the ACM.

    Google Scholar 

  4. A. Balakrishnan and N.R. Patel, Problem reduction methods and a tree generation algorithm for the Steiner network problem, Networks Vol. 17 (1987) pp. 65–85.

    Article  MathSciNet  MATH  Google Scholar 

  5. J.E. Beasley, OR-Library: distributing test problems by electronic mail, Journal of the Operational Research Society Vol. 41 (1990) pp. 1069–1072.

    Google Scholar 

  6. I. Bennour and J. Cloutier, Steiner tree approximation using neural networks, in: Congress Canadian sur l’integration a tres grande echelle (CCVLSI), Halifax (1992) pp. 268–275.

    Google Scholar 

  7. P. Berman and V. Ramaiyer, Improved approximations for the Steiner tree problem. Journal of Algorithms Vol. 17 (1994) pp. 381–408.

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Bern and P. Plassmann, The Steiner problem with edge lengths 1 and 2, Information Processing Letters Vol. 32 (1989) pp. 171–176.

    Article  MathSciNet  MATH  Google Scholar 

  9. G.-H. Chen, M.E. Houle and M.T. Kuo, The Steiner problem in distributed computing systems, Information Sciences Vol. 74 (1993) pp. 73–96.

    Article  MathSciNet  MATH  Google Scholar 

  10. N.P. Chen, New algorithms for Steiner tree on graphs, in: Proceedings of the IEEE International Symposium on Circuits and Systems (1983) pp. 1217–1219.

    Google Scholar 

  11. S. Chopra, E.R. Gorres and M.R. Rao, Solving the Steiner tree problem on a graph using branch and cut, ORSA Journal on Computing Vol. 4 (1992) pp. 320–335.

    Article  MATH  Google Scholar 

  12. E.A. Choukhmane, Une heuristique pour le probleme de l’arbre de Steiner, R.A.I.R.O. Recherche Operationelle Vol. 12 (1978) pp. 207–212.

    MathSciNet  MATH  Google Scholar 

  13. M. Dorigo, V. Maniezzo and A. Colorni, Ant system: Optimization by a colony of cooperating agents, IEEE Transactions on Systems, Man, and Cybernetics Vol. B-26 (1996) pp. 29–41.

    Google Scholar 

  14. K.A. Dowsland, Hill-climbing, simulated annealing and the Steiner problem in graphs, Engineering Optimization Vol. 17 (1991) pp. 91–107.

    Article  Google Scholar 

  15. D.-Z. Du and Y. Zhang, On better heuristics for Steiner minimum trees, Mathematical Programming Vol. 57 (1992) pp. 193–202.

    Article  MathSciNet  MATH  Google Scholar 

  16. G. Dueck, T. Scheuer and H.-M. Wallmeier, The C.H.I.P.-Algorithm, Working Paper, IBM Germany, Heidelberg (1991).

    Google Scholar 

  17. C. Duin, Steiner’s problem in graphs, Ph.D. thesis, Amsterdam (1993).

    Google Scholar 

  18. C.W. Duin, Preprocessing the Steiner problem in graphs, this volume (1999).

    Google Scholar 

  19. C.W. Duin and A. Volgenant, An edge elimination test for the Steiner problem in graphs, Operations Research Letters Vol. 8 (1989) pp. 79–83.

    Article  MathSciNet  MATH  Google Scholar 

  20. C.W. Duin and A. Volgenant, Reduction tests for the Steiner problem in graphs, Networks Vol. 19 (1989) pp. 549–567.

    Article  MathSciNet  MATH  Google Scholar 

  21. C.W. Duin and A. Volgenant, Reducing the hierarchical network design problem, European Journal of Operational Research Vol. 39 (1989) pp. 332–344.

    Article  MathSciNet  MATH  Google Scholar 

  22. C.W. Duin and S. Voß, Steiner tree heuristics — a survey, in: H. Dyckhoff, U. Derigs, M. Salomon and H.C. Tijms (eds.) Operations Research Proceedings, (Springer, Berlin, 1994) 485–496.

    Google Scholar 

  23. C.W. Duin and S. Voß, The pilot method — a strategy for heuristic repetition with application to the Steiner problem in graphs, Working Paper, Univ. Amsterdam (1995), to appear in Networks.

    Google Scholar 

  24. C.W. Duin and S. Voß, Efficient path and vertex exchange in Steiner tree algorithms, Networks Vol. 29 (1997) pp. 89–105.

    Article  MathSciNet  MATH  Google Scholar 

  25. H. Esbensen, Computing near-optimal solutions to the Steiner problem in a graph using a genetic algorithm, Networks Vol. 26 (1995) pp. 173–185.

    Article  MATH  Google Scholar 

  26. A. Fink and S. Voß, A note on the rectilinear Steiner arborescence problem, Working Paper, TH Darmstadt (1994).

    Google Scholar 

  27. A. Fink and S. Voß, Generic metaheuristics application to industrial engineering problems. Working Paper, TU Braunschweig (1998), to appear in Computers & Industrial Engineering.

    Google Scholar 

  28. A. Fink and S. Voß, Candidate list strategies and variable neighbourhood search. Working Paper, TU Braunschweig (1999).

    Google Scholar 

  29. R. Floren, A note on “A faster approximation algorithm for the Steiner problem in graphs”, Information Processing Letters Vol. 38 (1991) pp. 177–178.

    Article  MathSciNet  MATH  Google Scholar 

  30. H.N. Gabow, Z. Galil, T. Spencer and R.E. Tarjan, Efficient algorithms for finding minimum spanning trees in undirected and directed graphs, Combinatorica Vol. 6 (1986) pp. 109–122.

    Article  MathSciNet  MATH  Google Scholar 

  31. M. Gendreau, J.-F. Larochelle and B. Sansó, A tabu search heuristic for the Steiner tree problem, Working paper, CRT, Montreal (1998).

    Google Scholar 

  32. A. Ghanwani, Neural and delay based heuristics for the Steiner problem in networks, European Journal of Operational Research Vol. 108 (1998) pp. 241–265.

    Article  MATH  Google Scholar 

  33. F. Glover and M. Laguna, Tabu Search, (Kluwer, Boston, 1997).

    Book  MATH  Google Scholar 

  34. P. Guitart and J.M. Basart, A genetic algorithm approach for the Steiner problem in graphs, in: EUFIT 98 Proceedings, (Elite Foundation, Aachen, 1998) pp. 508–512.

    Google Scholar 

  35. P. Guitart and J.M. Basart, A high performance approximate algorithm for the Steiner problem in graphs, in: M. Luby, J. Rolim and M.J. Sema (eds.) Randomization and Approximation Techniques in Computer Science, Lecture Notes in Computer Science Vol. 1518, (Springer, Berlin, 1998) pp. 280–293.

    Chapter  Google Scholar 

  36. J. Hesser, R. Männer and O. Stucky, Optimization of Steiner trees using genetical algorithms, in: J.D. Schaffer (ed.) Proceedings of the Third International Conference on Genetic Algorithms, (Morgan Kaufmann, San Mateo, 1989) pp. 231–236.

    Google Scholar 

  37. J. Hesser, R. Männer and O. Stucky, On Steiner trees and genetic al-gorithms, in: J.D. Becker, I. Eisele and F.W. Müindemann (eds.) Parallelism, Learning, Evolution, Lecture Notes in Computer Science Vol. 565, (Springer, Berlin, 1991) pp. 509–525.

    Chapter  Google Scholar 

  38. F.K. Hwang, D.S. Richards and P. Winter, The Steiner Tree Problem, (North-Holland, Amsterdam, 1992).

    MATH  Google Scholar 

  39. Y.-B. Ji and M.-L. Liu, A new scheme for the Steiner problem in graphs, in: Proceedings of the IEEE International Symposium on Circuits and Systems (1988) pp. 1839–1842.

    Google Scholar 

  40. Y. Jiang, H. Kautz and B. Selman, Solving problems with hard and soft constraints using a stochastic algorithm for MAX-SAT, Working Paper, AT&T Bell Laboratories (1995).

    Google Scholar 

  41. A. Kapsalis, V.J. Rayward-Smith and G.D. Smith, Solving the graphi-cal Steiner tree problem using genetic algorithms, Journal of the Operational Research Society Vol. 44 (1993) pp. 397–406.

    MATH  Google Scholar 

  42. M. Karpinski and A. Zelikovsky, New approximation algorithms for the Steiner tree problems, Electronic Colloquium on Computational Complexity TR95–003 (1995), and Journal of Combinatorial Optimization Vol. 1 (1997) pp. 47–65.

    Article  MathSciNet  MATH  Google Scholar 

  43. B.N. Khoury and P.M. Pardalos, A heuristic for the Steiner problem in graphs, Computational Optimization and Applications Vol. 6 (1996) pp. 5–14.

    Article  MathSciNet  MATH  Google Scholar 

  44. B.N. Khoury, P.M. Pardalos and D.-Z. Du, A test problem generator for the Steiner problem in graphs, ACM Transactions on Mathematical Software Vol. 19 (1993) pp. 509–522.

    Article  MATH  Google Scholar 

  45. L.T. Kou, On efficient implementation of an approximation algorithm for the Steiner tree problem, Acta Informatica Vol. 27 (1990) pp. 369–380.

    Article  MathSciNet  MATH  Google Scholar 

  46. L. Kou, G. Markowsky and L. Berman, A fast algorithm for Steiner trees, Acta Informatica Vol. 15 (1981) pp. 141–145.

    Article  MathSciNet  MATH  Google Scholar 

  47. J.B. Kruskal, On the shortest spanning subtree of a graph and the travelling salesman problem, Proc. Amer. Math. Soc. Vol. 7 (1956) pp. 48–50.

    Article  MathSciNet  MATH  Google Scholar 

  48. A. Lucena, Steiner problem in graphs: Lagrangean relaxation and cutting-planes, Bulletin of the Committee on Algorithms Vol. 21 (1992) pp. 2–7.

    Google Scholar 

  49. A. Lucena and J.E. Beasley, A branch and cut algorithm for the Steiner problem in graphs, Networks Vol. 31 (1998) pp. 39–59.

    Article  MathSciNet  MATH  Google Scholar 

  50. N. Maculan, P. Souza and A. Candia Vejar, An approach for the Steiner problem in directed graphs, Annals of Operations Research Vol. 33 (1991) pp. 471–480.

    Article  MathSciNet  MATH  Google Scholar 

  51. S.L. Martins, P.M. Pardalos, M.G.C. Resende and C.C. Ribeiro, Greedy randomized adaptive search procedures for the Steiner problem in graphs, in: P. Pardalos, S. Rajasekaran and J. Rolim (eds.) Randomization Methods in Algorithm Design, DIMACS Series in Discrete Mathematics and Theoretical Computer Science 43, (AMS, Providence, 1998) pp. 133–145.

    Google Scholar 

  52. S.L. Martins, C.C. Ribeiro and M.C. de Souza, A parallel GRASP for the Steiner problem in graphs, in: Lecture Notes in Computer Science Vol. 1457, (Springer, Berlin, 1998) pp. 285–297.

    Google Scholar 

  53. K. Mehlhorn, A faster approximation algorithm for the Steiner problem in graphs, Information Processing Letters Vol. 27 (1988) pp. 125–128.

    Article  MathSciNet  MATH  Google Scholar 

  54. M. Minoux, Efficient greedy heuristics for Steiner tree problems using reoptimization and supermodularity, INFOR Vol. 28 (1990) pp. 221–233.

    MATH  Google Scholar 

  55. L.J. Osborne and B.E. Gillett, A comparison of two simulated annealing algorithms applied to the directed Steiner problem on networks, ORSA Journal on Computing Vol. 3 (1991) pp. 213–225.

    Article  MATH  Google Scholar 

  56. C.H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity, (Prentice-Hall, Englewood Cliffs, 1982).

    MATH  Google Scholar 

  57. J. Pearl, Heuristics: Intelligent Search Techniques for Computer Problem Solving, (Addison-Wesley, Reading, 1984).

    Google Scholar 

  58. J. Plesnik, A bound for the Steiner tree problem in graphs, Math. Slovaca Vol. 31 (1981) pp. 155–163.

    MathSciNet  MATH  Google Scholar 

  59. J. Plesnik, Worst-case relative performance of heuristics for the Steiner problem in graphs, Acta Math. Univ. Comenianae Vol. 60 (1991) pp. 269–284.

    MathSciNet  MATH  Google Scholar 

  60. J. Plesnik, Heuristics for the Steiner problem in graphs, Discrete Applied Mathematics Vol. 37/38 (1992) pp. 451–463.

    Article  MathSciNet  Google Scholar 

  61. J. Plesnik, On some heuristics for the Steiner problem in graphs, in: J. Nesetril and M. Fiedler (eds.), Fourth Czechoslowakian Symposium on Combinatorics, Graphs and Complexity, (Elsevier, Amsterdam, 1992) pp. 255–257.

    Chapter  Google Scholar 

  62. T. Polzin and S. Vahdati Daneshmand, Algorithmen für das Steiner Problem, Diploma thesis, University of Dortmund (1997).

    Google Scholar 

  63. T. Polzin and S. Vahdati Daneshmand, Improved algorithms for the Steiner problem in networks, Working paper, University of Mannheim (1998).

    Google Scholar 

  64. C. Pornavalai, N. Shiratori and G. Chakraborty, Neural network for optimal Steiner tree computation, Neural Processing Letters Vol. 3 (1996) pp. 139–149.

    Article  Google Scholar 

  65. R.C. Prim, Shortest connection networks and some generalizations, Bell Syst. Techn. J. Vol. 36 (1957) pp. 1389–1401.

    Google Scholar 

  66. S.K. Rao, P. Sadayappan, F.K. Hwang and P.W. Shor, The rectilinear Steiner arborescence problem, Algorithmica Vol. 7 (1992) pp. 277–288.

    Article  MathSciNet  MATH  Google Scholar 

  67. V.J. Rayward-Smith, The computation of nearly minimal Steiner trees in graphs, Int. J. Math. Educ. Sci. Technol. Vol. 14 (1983) pp. 15–23.

    Article  MathSciNet  MATH  Google Scholar 

  68. V.J. Rayward-Smith and A. Clare, On finding Steiner vertices, Networks Vol. 16 (1986) pp. 283–294.

    Article  MathSciNet  MATH  Google Scholar 

  69. C.R. Reeves, Genetic Algorithms, in: C.R. Reeves (ed.), Modern Heuristic Techniques for Combinatorial Optimization, (Blackwell, Oxford, 1993) pp. 152–196.

    Google Scholar 

  70. C.C. Ribeiro and M.C. de Souza, Improved tabu search for the Steiner problem in graphs, Working paper, Catholic University of Rio de Janeiro (1998).

    Google Scholar 

  71. J.M. Samaniego, Evolutionary methods for the Steiner problem in networks: an experimental evaluation, Working paper, University of the Philippines Los Banos (1997).

    Google Scholar 

  72. C. Schiemangk, Thermodynamically motivated simulation for solving the Steiner tree problem and the optimization of interacting path systems, in: A. Iwainsky (ed.) Optimization of Connection Structures in Graphs, (Central Institute of Cybernetics and Information Processes, Berlin, 1985) pp. 91–120.

    Google Scholar 

  73. L. Sondergeld and S. Voß, A multi-level star-shaped intensification and diversification approach in tabu search for the Steiner tree problem in graphs, Working Paper, TU Braunschweig (1996).

    Google Scholar 

  74. C.C. de Souza and C.C. Ribeiro, Heuristics for the minimum rectilinear Steiner tree problem, Working Paper G-90–32, GERAD, Montreal (1990).

    Google Scholar 

  75. G. Syswerda, Uniform Crossover in Genetic Algorithms, in: J.D. Schaffer (ed.), Proceedings of the Third International Conference on Genetic Algorithms, (Morgan Kaufmann, San Mateo, 1989) pp. 2–9.

    Google Scholar 

  76. H. Takahashi and A. Matsuyama, An approximate solution for the Steiner problem in graphs, Math. Japonica Vol. 24 (1980) pp. 573–577.

    MathSciNet  MATH  Google Scholar 

  77. M.G.A. Verhoeven, Parallel Local Search, Ph.D. thesis, Eindhoven (1996).

    Google Scholar 

  78. M.G.A. Verhoeven, M.E.M. Severens and E.H.L. Aarts, Local search for Steiner trees in graphs, in: V.J. Rayward-Smith, I.H. Osman, C.R. Reeves and G.D. Smith (eds.) Modern Heuristic Search Methods, (Wiley, Chichester, 1996) 117–129.

    Google Scholar 

  79. <Refs />

    Google Scholar 

  80. S. Voß, Steiner-Probleme in Graphen, (Hain, Frankfurt/Main, 1990).

    MATH  Google Scholar 

  81. S. Voß, Steiner’s problem in graphs: heuristic methods, Discrete Applied Mathematics Vol. 40 (1992) pp. 45–72.

    Article  MathSciNet  MATH  Google Scholar 

  82. S. Voß, On the worst case performance of Takahashi and Matsuyama’s Steiner tree heuristic, Working Paper, TH Darmstadt (1992).

    Google Scholar 

  83. S. Voß, Worst case performance of some heuristics for Steiner’s problem in directed graphs, Information Processing Letters Vol. 48 (1993) pp. 99–105.

    Article  MathSciNet  MATH  Google Scholar 

  84. S. Voß, Observing logical interdependencies in tabu search — methods and results, in: V.J. Rayward-Smith, I.H. Osman, C.R. Reeves and G.D. Smith (eds.), Modern Heuristic Search Methods, (Wiley, Chichester, 1996) pp. 41–59.

    Google Scholar 

  85. S. Voß and C.W. Duin, Heuristic methods for the rectilinear Steiner arborescence problem, Engineering Optimization Vol. 21 (1993) pp. 121–145.

    Article  Google Scholar 

  86. S. Voß and K. Gutenschwager, A chunking based genetic algorithm for the Steiner tree problem in graphs, in: P.M. Pardalos and D. Du (eds.), Network Design: Connectivity and Facilities Location, DIMACS Series in Discrete Mathematics and Theoretical Computer Science 40, (AMS, Providence, 1998) pp. 335–355.

    Google Scholar 

  87. A.S.C. Wade and V.J. Rayward-Smith, Effective local search techniques for the Steiner tree problem, Studies in Locational Analysis Vol. 11 (1997), pp. 219–241.

    MathSciNet  MATH  Google Scholar 

  88. B.M. Waxman and M. Imase, Worst-case performance of RaywardSmith’s Steiner tree heuristic, Information Processing Letters Vol. 29 (1988) pp. 283–287.

    Article  MathSciNet  MATH  Google Scholar 

  89. P. Widmayer, Fast approximation algorithms for Steiner’s problem in graphs, Habilitation thesis, Institut für Angewandte Informatik und formale Beschreibungsverfahren, University Karlsruhe (1986).

    Google Scholar 

  90. P. Winter, Steiner problem in networks: a survey, Networks Vol. 17 (1987) pp. 129–167.

    Article  MathSciNet  MATH  Google Scholar 

  91. P. Winter, Reductions for the rectilinear Steiner problem, Working Paper, Rutgers University (1995).

    Google Scholar 

  92. P. Winter and J. MacGregor Smith, Path-distance heuristics for the Steiner problem in undirected networks, Algorithmica Vol. 7 (1992) pp. 309–327.

    Article  MathSciNet  MATH  Google Scholar 

  93. D. L. Woodruff, Proposals for Chunking and Tabu Search, European Journal of Operational Research Vol. 106 (1998) pp. 585–598.

    Article  MATH  Google Scholar 

  94. R.T. Wong, A dual ascent approach for Steiner tree problems on a directed graph, Mathematical Programming Vol. 28 (1984) pp. 271–287.

    Article  MathSciNet  MATH  Google Scholar 

  95. J. Xu, S.Y. Chiu and F. Glover, A probabilistic tabu search for the telecommunications network design, Combinatorial Optimization: Theory and Practice Vol. 1 (1996) pp. 69–94.

    Google Scholar 

  96. J. Xu, S.Y. Chiu and F. Glover, Using tabu search to solve Steiner tree-star problem in telecommunications network design, Telecommunication Systems Vol. 6 (1996) pp. 117–125.

    Article  Google Scholar 

  97. A.Z. Zelikovsky, An 11/6approximation algorithm for the Steiner problem on graphs, in: J. Nesetril and M. Fiedler (eds.), Fourth Czechoslowakian Symposium on Combinatorics, Graphs and Complexity, (Elsevier, Amsterdam, 1992) pp. 351–354.

    Chapter  Google Scholar 

  98. A.Z. Zelikovsky, A faster approximation algorithm for the Steiner tree problem in graphs, Information Processing Letters Vol. 46 (1993) pp. 79–83.

    Article  MathSciNet  MATH  Google Scholar 

  99. A. Zelikovsky, A polynomial-time subpolynom-approximation scheme for the acyclic directed Steiner tree problem, Working Paper, Institute of Mathematics, Moldova (1994).

    Google Scholar 

  100. A. Zelikovsky, A series of approximation algorithms for the acyclic directed Steiner tree problem, Algorithmica Vol. 18 (1997) pp. 99–110.

    Article  MathSciNet  MATH  Google Scholar 

  101. J. Zhongqi, S. Huaying and G. Hongming, Using neural networks to solve Steiner tree problem, in: IEEE TENCON ‘93, Beijing (1993) pp. 807–810.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Voß, S. (2000). Modern Heuristic Search Methods for the Steiner Tree Problem in Graphs. In: Du, DZ., Smith, J.M., Rubinstein, J.H. (eds) Advances in Steiner Trees. Combinatorial Optimization, vol 6. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3171-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3171-2_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4824-3

  • Online ISBN: 978-1-4757-3171-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics