Modern Heuristic Search Methods for the Steiner Tree Problem in Graphs

  • Stefan Voß
Part of the Combinatorial Optimization book series (COOP, volume 6)

Abstract

Given an edge-weighted graph, the Steiner tree problem in graphs is to determine a minimum cost subgraph spanning a set of specified vertices. More specifically, consider an undirected connected graph G = (V, E) with vertex set V, edge set E, and nonnegative weights associated with the edges. Given a set Q ⊆ V of basic vertices Steiner’s problem in graphs (SP) is to find a minimum cost subgraph of G such that there exists a path in the subgraph between every pair of basic (or required) vertices. In order to achieve this minimum cost subgraph additional vertices from the set S:= V— Q, socalled Steiner vertices, may be included. Since all edge weights are assumed to be nonnegative, there is an optimal solution which is a tree, a so-called Steiner tree.

Keywords

Local Search Tabu Search Steiner Tree Greedy Randomize Adaptive Search Procedure Steiner Tree Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M.J. Alexander and G. Robins, New performance-driven FPGA routing algoritluns, Working Paper, University of Virginia (1995).Google Scholar
  2. [2]
    A.A. Andreatta, S.E.R. Carvalho and C.C. Ribeiro, An object-oriented framework for local search heuristics, Working Paper, Catholic University of Rio de Janeiro (1998).Google Scholar
  3. [3]
    S. Arora, Polynomial-time approximation schemes for Euclidean TSP and other geometric problems, Princeton University (1996), to appear in Journal of the ACM. Google Scholar
  4. [4]
    A. Balakrishnan and N.R. Patel, Problem reduction methods and a tree generation algorithm for the Steiner network problem, Networks Vol. 17 (1987) pp. 65–85.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    J.E. Beasley, OR-Library: distributing test problems by electronic mail, Journal of the Operational Research Society Vol. 41 (1990) pp. 1069–1072.Google Scholar
  6. [6]
    I. Bennour and J. Cloutier, Steiner tree approximation using neural networks, in: Congress Canadian sur l’integration a tres grande echelle (CCVLSI), Halifax (1992) pp. 268–275.Google Scholar
  7. [7]
    P. Berman and V. Ramaiyer, Improved approximations for the Steiner tree problem. Journal of Algorithms Vol. 17 (1994) pp. 381–408.MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    M. Bern and P. Plassmann, The Steiner problem with edge lengths 1 and 2, Information Processing Letters Vol. 32 (1989) pp. 171–176.MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    G.-H. Chen, M.E. Houle and M.T. Kuo, The Steiner problem in distributed computing systems, Information Sciences Vol. 74 (1993) pp. 73–96.MathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    N.P. Chen, New algorithms for Steiner tree on graphs, in: Proceedings of the IEEE International Symposium on Circuits and Systems (1983) pp. 1217–1219.Google Scholar
  11. [11]
    S. Chopra, E.R. Gorres and M.R. Rao, Solving the Steiner tree problem on a graph using branch and cut, ORSA Journal on Computing Vol. 4 (1992) pp. 320–335.MATHCrossRefGoogle Scholar
  12. [12]
    E.A. Choukhmane, Une heuristique pour le probleme de l’arbre de Steiner, R.A.I.R.O. Recherche Operationelle Vol. 12 (1978) pp. 207–212.MathSciNetMATHGoogle Scholar
  13. [13]
    M. Dorigo, V. Maniezzo and A. Colorni, Ant system: Optimization by a colony of cooperating agents, IEEE Transactions on Systems, Man, and Cybernetics Vol. B-26 (1996) pp. 29–41.Google Scholar
  14. [14]
    K.A. Dowsland, Hill-climbing, simulated annealing and the Steiner problem in graphs, Engineering Optimization Vol. 17 (1991) pp. 91–107.CrossRefGoogle Scholar
  15. [15]
    D.-Z. Du and Y. Zhang, On better heuristics for Steiner minimum trees, Mathematical Programming Vol. 57 (1992) pp. 193–202.MathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    G. Dueck, T. Scheuer and H.-M. Wallmeier, The C.H.I.P.-Algorithm, Working Paper, IBM Germany, Heidelberg (1991).Google Scholar
  17. [17]
    C. Duin, Steiner’s problem in graphs, Ph.D. thesis, Amsterdam (1993).Google Scholar
  18. [18]
    C.W. Duin, Preprocessing the Steiner problem in graphs, this volume (1999).Google Scholar
  19. [19]
    C.W. Duin and A. Volgenant, An edge elimination test for the Steiner problem in graphs, Operations Research Letters Vol. 8 (1989) pp. 79–83.MathSciNetMATHCrossRefGoogle Scholar
  20. [20]
    C.W. Duin and A. Volgenant, Reduction tests for the Steiner problem in graphs, Networks Vol. 19 (1989) pp. 549–567.MathSciNetMATHCrossRefGoogle Scholar
  21. [21]
    C.W. Duin and A. Volgenant, Reducing the hierarchical network design problem, European Journal of Operational Research Vol. 39 (1989) pp. 332–344.MathSciNetMATHCrossRefGoogle Scholar
  22. [22]
    C.W. Duin and S. Voß, Steiner tree heuristics — a survey, in: H. Dyckhoff, U. Derigs, M. Salomon and H.C. Tijms (eds.) Operations Research Proceedings, (Springer, Berlin, 1994) 485–496.Google Scholar
  23. [23]
    C.W. Duin and S. Voß, The pilot method — a strategy for heuristic repetition with application to the Steiner problem in graphs, Working Paper, Univ. Amsterdam (1995), to appear in Networks. Google Scholar
  24. [24]
    C.W. Duin and S. Voß, Efficient path and vertex exchange in Steiner tree algorithms, Networks Vol. 29 (1997) pp. 89–105.MathSciNetMATHCrossRefGoogle Scholar
  25. [25]
    H. Esbensen, Computing near-optimal solutions to the Steiner problem in a graph using a genetic algorithm, Networks Vol. 26 (1995) pp. 173–185.MATHCrossRefGoogle Scholar
  26. [26]
    A. Fink and S. Voß, A note on the rectilinear Steiner arborescence problem, Working Paper, TH Darmstadt (1994).Google Scholar
  27. [27]
    A. Fink and S. Voß, Generic metaheuristics application to industrial engineering problems. Working Paper, TU Braunschweig (1998), to appear in Computers & Industrial Engineering.Google Scholar
  28. [28]
    A. Fink and S. Voß, Candidate list strategies and variable neighbourhood search. Working Paper, TU Braunschweig (1999).Google Scholar
  29. [29]
    R. Floren, A note on “A faster approximation algorithm for the Steiner problem in graphs”, Information Processing Letters Vol. 38 (1991) pp. 177–178.MathSciNetMATHCrossRefGoogle Scholar
  30. [30]
    H.N. Gabow, Z. Galil, T. Spencer and R.E. Tarjan, Efficient algorithms for finding minimum spanning trees in undirected and directed graphs, Combinatorica Vol. 6 (1986) pp. 109–122.MathSciNetMATHCrossRefGoogle Scholar
  31. [31]
    M. Gendreau, J.-F. Larochelle and B. Sansó, A tabu search heuristic for the Steiner tree problem, Working paper, CRT, Montreal (1998).Google Scholar
  32. [32]
    A. Ghanwani, Neural and delay based heuristics for the Steiner problem in networks, European Journal of Operational Research Vol. 108 (1998) pp. 241–265.MATHCrossRefGoogle Scholar
  33. [33]
    F. Glover and M. Laguna, Tabu Search, (Kluwer, Boston, 1997).MATHCrossRefGoogle Scholar
  34. [34]
    P. Guitart and J.M. Basart, A genetic algorithm approach for the Steiner problem in graphs, in: EUFIT 98 Proceedings, (Elite Foundation, Aachen, 1998) pp. 508–512.Google Scholar
  35. [35]
    P. Guitart and J.M. Basart, A high performance approximate algorithm for the Steiner problem in graphs, in: M. Luby, J. Rolim and M.J. Sema (eds.) Randomization and Approximation Techniques in Computer Science, Lecture Notes in Computer Science Vol. 1518, (Springer, Berlin, 1998) pp. 280–293.CrossRefGoogle Scholar
  36. [36]
    J. Hesser, R. Männer and O. Stucky, Optimization of Steiner trees using genetical algorithms, in: J.D. Schaffer (ed.) Proceedings of the Third International Conference on Genetic Algorithms, (Morgan Kaufmann, San Mateo, 1989) pp. 231–236.Google Scholar
  37. [37]
    J. Hesser, R. Männer and O. Stucky, On Steiner trees and genetic al-gorithms, in: J.D. Becker, I. Eisele and F.W. Müindemann (eds.) Parallelism, Learning, Evolution, Lecture Notes in Computer Science Vol. 565, (Springer, Berlin, 1991) pp. 509–525.CrossRefGoogle Scholar
  38. [38]
    F.K. Hwang, D.S. Richards and P. Winter, The Steiner Tree Problem, (North-Holland, Amsterdam, 1992).MATHGoogle Scholar
  39. [39]
    Y.-B. Ji and M.-L. Liu, A new scheme for the Steiner problem in graphs, in: Proceedings of the IEEE International Symposium on Circuits and Systems (1988) pp. 1839–1842.Google Scholar
  40. [40]
    Y. Jiang, H. Kautz and B. Selman, Solving problems with hard and soft constraints using a stochastic algorithm for MAX-SAT, Working Paper, AT&T Bell Laboratories (1995).Google Scholar
  41. [41]
    A. Kapsalis, V.J. Rayward-Smith and G.D. Smith, Solving the graphi-cal Steiner tree problem using genetic algorithms, Journal of the Operational Research Society Vol. 44 (1993) pp. 397–406.MATHGoogle Scholar
  42. [42]
    M. Karpinski and A. Zelikovsky, New approximation algorithms for the Steiner tree problems, Electronic Colloquium on Computational Complexity TR95–003 (1995), and Journal of Combinatorial Optimization Vol. 1 (1997) pp. 47–65.MathSciNetMATHCrossRefGoogle Scholar
  43. [43]
    B.N. Khoury and P.M. Pardalos, A heuristic for the Steiner problem in graphs, Computational Optimization and Applications Vol. 6 (1996) pp. 5–14.MathSciNetMATHCrossRefGoogle Scholar
  44. [44]
    B.N. Khoury, P.M. Pardalos and D.-Z. Du, A test problem generator for the Steiner problem in graphs, ACM Transactions on Mathematical Software Vol. 19 (1993) pp. 509–522.MATHCrossRefGoogle Scholar
  45. [45]
    L.T. Kou, On efficient implementation of an approximation algorithm for the Steiner tree problem, Acta Informatica Vol. 27 (1990) pp. 369–380.MathSciNetMATHCrossRefGoogle Scholar
  46. [46]
    L. Kou, G. Markowsky and L. Berman, A fast algorithm for Steiner trees, Acta Informatica Vol. 15 (1981) pp. 141–145.MathSciNetMATHCrossRefGoogle Scholar
  47. [47]
    J.B. Kruskal, On the shortest spanning subtree of a graph and the travelling salesman problem, Proc. Amer. Math. Soc. Vol. 7 (1956) pp. 48–50.MathSciNetMATHCrossRefGoogle Scholar
  48. [48]
    A. Lucena, Steiner problem in graphs: Lagrangean relaxation and cutting-planes, Bulletin of the Committee on Algorithms Vol. 21 (1992) pp. 2–7.Google Scholar
  49. [49]
    A. Lucena and J.E. Beasley, A branch and cut algorithm for the Steiner problem in graphs, Networks Vol. 31 (1998) pp. 39–59.MathSciNetMATHCrossRefGoogle Scholar
  50. [50]
    N. Maculan, P. Souza and A. Candia Vejar, An approach for the Steiner problem in directed graphs, Annals of Operations Research Vol. 33 (1991) pp. 471–480.MathSciNetMATHCrossRefGoogle Scholar
  51. [51]
    S.L. Martins, P.M. Pardalos, M.G.C. Resende and C.C. Ribeiro, Greedy randomized adaptive search procedures for the Steiner problem in graphs, in: P. Pardalos, S. Rajasekaran and J. Rolim (eds.) Randomization Methods in Algorithm Design, DIMACS Series in Discrete Mathematics and Theoretical Computer Science 43, (AMS, Providence, 1998) pp. 133–145.Google Scholar
  52. [52]
    S.L. Martins, C.C. Ribeiro and M.C. de Souza, A parallel GRASP for the Steiner problem in graphs, in: Lecture Notes in Computer Science Vol. 1457, (Springer, Berlin, 1998) pp. 285–297.Google Scholar
  53. [53]
    K. Mehlhorn, A faster approximation algorithm for the Steiner problem in graphs, Information Processing Letters Vol. 27 (1988) pp. 125–128.MathSciNetMATHCrossRefGoogle Scholar
  54. [54]
    M. Minoux, Efficient greedy heuristics for Steiner tree problems using reoptimization and supermodularity, INFOR Vol. 28 (1990) pp. 221–233.MATHGoogle Scholar
  55. [55]
    L.J. Osborne and B.E. Gillett, A comparison of two simulated annealing algorithms applied to the directed Steiner problem on networks, ORSA Journal on Computing Vol. 3 (1991) pp. 213–225.MATHCrossRefGoogle Scholar
  56. [56]
    C.H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity, (Prentice-Hall, Englewood Cliffs, 1982).MATHGoogle Scholar
  57. [57]
    J. Pearl, Heuristics: Intelligent Search Techniques for Computer Problem Solving, (Addison-Wesley, Reading, 1984).Google Scholar
  58. [58]
    J. Plesnik, A bound for the Steiner tree problem in graphs, Math. Slovaca Vol. 31 (1981) pp. 155–163.MathSciNetMATHGoogle Scholar
  59. [59]
    J. Plesnik, Worst-case relative performance of heuristics for the Steiner problem in graphs, Acta Math. Univ. Comenianae Vol. 60 (1991) pp. 269–284.MathSciNetMATHGoogle Scholar
  60. [60]
    J. Plesnik, Heuristics for the Steiner problem in graphs, Discrete Applied Mathematics Vol. 37/38 (1992) pp. 451–463.MathSciNetCrossRefGoogle Scholar
  61. [61]
    J. Plesnik, On some heuristics for the Steiner problem in graphs, in: J. Nesetril and M. Fiedler (eds.), Fourth Czechoslowakian Symposium on Combinatorics, Graphs and Complexity, (Elsevier, Amsterdam, 1992) pp. 255–257.CrossRefGoogle Scholar
  62. [62]
    T. Polzin and S. Vahdati Daneshmand, Algorithmen für das Steiner Problem, Diploma thesis, University of Dortmund (1997).Google Scholar
  63. [63]
    T. Polzin and S. Vahdati Daneshmand, Improved algorithms for the Steiner problem in networks, Working paper, University of Mannheim (1998).Google Scholar
  64. [64]
    C. Pornavalai, N. Shiratori and G. Chakraborty, Neural network for optimal Steiner tree computation, Neural Processing Letters Vol. 3 (1996) pp. 139–149.CrossRefGoogle Scholar
  65. [65]
    R.C. Prim, Shortest connection networks and some generalizations, Bell Syst. Techn. J. Vol. 36 (1957) pp. 1389–1401.Google Scholar
  66. [66]
    S.K. Rao, P. Sadayappan, F.K. Hwang and P.W. Shor, The rectilinear Steiner arborescence problem, Algorithmica Vol. 7 (1992) pp. 277–288.MathSciNetMATHCrossRefGoogle Scholar
  67. [67]
    V.J. Rayward-Smith, The computation of nearly minimal Steiner trees in graphs, Int. J. Math. Educ. Sci. Technol. Vol. 14 (1983) pp. 15–23.MathSciNetMATHCrossRefGoogle Scholar
  68. [68]
    V.J. Rayward-Smith and A. Clare, On finding Steiner vertices, Networks Vol. 16 (1986) pp. 283–294.MathSciNetMATHCrossRefGoogle Scholar
  69. [69]
    C.R. Reeves, Genetic Algorithms, in: C.R. Reeves (ed.), Modern Heuristic Techniques for Combinatorial Optimization, (Blackwell, Oxford, 1993) pp. 152–196.Google Scholar
  70. [70]
    C.C. Ribeiro and M.C. de Souza, Improved tabu search for the Steiner problem in graphs, Working paper, Catholic University of Rio de Janeiro (1998).Google Scholar
  71. [71]
    J.M. Samaniego, Evolutionary methods for the Steiner problem in networks: an experimental evaluation, Working paper, University of the Philippines Los Banos (1997).Google Scholar
  72. [72]
    C. Schiemangk, Thermodynamically motivated simulation for solving the Steiner tree problem and the optimization of interacting path systems, in: A. Iwainsky (ed.) Optimization of Connection Structures in Graphs, (Central Institute of Cybernetics and Information Processes, Berlin, 1985) pp. 91–120.Google Scholar
  73. [73]
    L. Sondergeld and S. Voß, A multi-level star-shaped intensification and diversification approach in tabu search for the Steiner tree problem in graphs, Working Paper, TU Braunschweig (1996).Google Scholar
  74. [74]
    C.C. de Souza and C.C. Ribeiro, Heuristics for the minimum rectilinear Steiner tree problem, Working Paper G-90–32, GERAD, Montreal (1990).Google Scholar
  75. [75]
    G. Syswerda, Uniform Crossover in Genetic Algorithms, in: J.D. Schaffer (ed.), Proceedings of the Third International Conference on Genetic Algorithms, (Morgan Kaufmann, San Mateo, 1989) pp. 2–9.Google Scholar
  76. [76]
    H. Takahashi and A. Matsuyama, An approximate solution for the Steiner problem in graphs, Math. Japonica Vol. 24 (1980) pp. 573–577.MathSciNetMATHGoogle Scholar
  77. [77]
    M.G.A. Verhoeven, Parallel Local Search, Ph.D. thesis, Eindhoven (1996).Google Scholar
  78. [78]
    M.G.A. Verhoeven, M.E.M. Severens and E.H.L. Aarts, Local search for Steiner trees in graphs, in: V.J. Rayward-Smith, I.H. Osman, C.R. Reeves and G.D. Smith (eds.) Modern Heuristic Search Methods, (Wiley, Chichester, 1996) 117–129.Google Scholar
  79. [79]
    S. Voß, Steiner-Probleme in Graphen, (Hain, Frankfurt/Main, 1990).MATHGoogle Scholar
  80. [80]
    S. Voß, Steiner’s problem in graphs: heuristic methods, Discrete Applied Mathematics Vol. 40 (1992) pp. 45–72.MathSciNetMATHCrossRefGoogle Scholar
  81. [81]
    S. Voß, On the worst case performance of Takahashi and Matsuyama’s Steiner tree heuristic, Working Paper, TH Darmstadt (1992).Google Scholar
  82. [82]
    S. Voß, Worst case performance of some heuristics for Steiner’s problem in directed graphs, Information Processing Letters Vol. 48 (1993) pp. 99–105.MathSciNetMATHCrossRefGoogle Scholar
  83. [83]
    S. Voß, Observing logical interdependencies in tabu search — methods and results, in: V.J. Rayward-Smith, I.H. Osman, C.R. Reeves and G.D. Smith (eds.), Modern Heuristic Search Methods, (Wiley, Chichester, 1996) pp. 41–59.Google Scholar
  84. [84]
    S. Voß and C.W. Duin, Heuristic methods for the rectilinear Steiner arborescence problem, Engineering Optimization Vol. 21 (1993) pp. 121–145.CrossRefGoogle Scholar
  85. [85]
    S. Voß and K. Gutenschwager, A chunking based genetic algorithm for the Steiner tree problem in graphs, in: P.M. Pardalos and D. Du (eds.), Network Design: Connectivity and Facilities Location, DIMACS Series in Discrete Mathematics and Theoretical Computer Science 40, (AMS, Providence, 1998) pp. 335–355.Google Scholar
  86. [86]
    A.S.C. Wade and V.J. Rayward-Smith, Effective local search techniques for the Steiner tree problem, Studies in Locational Analysis Vol. 11 (1997), pp. 219–241.MathSciNetMATHGoogle Scholar
  87. [87]
    B.M. Waxman and M. Imase, Worst-case performance of RaywardSmith’s Steiner tree heuristic, Information Processing Letters Vol. 29 (1988) pp. 283–287.MathSciNetMATHCrossRefGoogle Scholar
  88. [88]
    P. Widmayer, Fast approximation algorithms for Steiner’s problem in graphs, Habilitation thesis, Institut für Angewandte Informatik und formale Beschreibungsverfahren, University Karlsruhe (1986).Google Scholar
  89. [89]
    P. Winter, Steiner problem in networks: a survey, Networks Vol. 17 (1987) pp. 129–167.MathSciNetMATHCrossRefGoogle Scholar
  90. [90]
    P. Winter, Reductions for the rectilinear Steiner problem, Working Paper, Rutgers University (1995).Google Scholar
  91. [91]
    P. Winter and J. MacGregor Smith, Path-distance heuristics for the Steiner problem in undirected networks, Algorithmica Vol. 7 (1992) pp. 309–327.MathSciNetMATHCrossRefGoogle Scholar
  92. [92]
    D. L. Woodruff, Proposals for Chunking and Tabu Search, European Journal of Operational Research Vol. 106 (1998) pp. 585–598.MATHCrossRefGoogle Scholar
  93. [93]
    R.T. Wong, A dual ascent approach for Steiner tree problems on a directed graph, Mathematical Programming Vol. 28 (1984) pp. 271–287.MathSciNetMATHCrossRefGoogle Scholar
  94. [94]
    J. Xu, S.Y. Chiu and F. Glover, A probabilistic tabu search for the telecommunications network design, Combinatorial Optimization: Theory and Practice Vol. 1 (1996) pp. 69–94.Google Scholar
  95. [95]
    J. Xu, S.Y. Chiu and F. Glover, Using tabu search to solve Steiner tree-star problem in telecommunications network design, Telecommunication Systems Vol. 6 (1996) pp. 117–125.CrossRefGoogle Scholar
  96. [96]
    A.Z. Zelikovsky, An 11/6approximation algorithm for the Steiner problem on graphs, in: J. Nesetril and M. Fiedler (eds.), Fourth Czechoslowakian Symposium on Combinatorics, Graphs and Complexity, (Elsevier, Amsterdam, 1992) pp. 351–354.CrossRefGoogle Scholar
  97. [97]
    A.Z. Zelikovsky, A faster approximation algorithm for the Steiner tree problem in graphs, Information Processing Letters Vol. 46 (1993) pp. 79–83.MathSciNetMATHCrossRefGoogle Scholar
  98. [98]
    A. Zelikovsky, A polynomial-time subpolynom-approximation scheme for the acyclic directed Steiner tree problem, Working Paper, Institute of Mathematics, Moldova (1994).Google Scholar
  99. [99]
    A. Zelikovsky, A series of approximation algorithms for the acyclic directed Steiner tree problem, Algorithmica Vol. 18 (1997) pp. 99–110.MathSciNetMATHCrossRefGoogle Scholar
  100. [100]
    J. Zhongqi, S. Huaying and G. Hongming, Using neural networks to solve Steiner tree problem, in: IEEE TENCON ‘93, Beijing (1993) pp. 807–810.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • Stefan Voß
    • 1
  1. 1.Institut für WirtschaftswissenschaftenTechnische Universität BraunschweigBraunschweigGermany

Personalised recommendations