Skip to main content

Preprocessing the Steiner Problem in Graphs

  • Chapter
Advances in Steiner Trees

Part of the book series: Combinatorial Optimization ((COOP,volume 6))

Abstract

For combinatorial optimization problems that are NP-hard, it is important, before running a time consuming algorithm, to try to reduce the input size of the problem. This is the objective of a so-called preprocessing algorithm. A renowned NP-hard problem is the Steiner Problem in Graphs (SPG). It considers a weighted graph, denoted here as G = (V,K,E,c) with V the set of vertices, K a subset of so-called special vertices, E the set of undirected edges, and c: E→ Z + a positive integer weight function on E. The problem is to find a tree S of minimum total edge weight that spans the vertices of K.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Balakrishnan and N.R. Patel, Problem Reduction Methods and a Tree Generation Algorithm for the Steiner Network Problem, Networks 17 (1987) pp. 65–85.

    Article  MathSciNet  MATH  Google Scholar 

  2. J.E. Beasley, An Algorithm for the Steiner problem in Graphs, Networks 14 (1984) pp. 147–159.

    Article  MathSciNet  MATH  Google Scholar 

  3. J.E. Beasley, An SST based algorithm for the Steiner problem in graphs, Networks 19 (1989) pp. 1–16.

    Article  MathSciNet  MATH  Google Scholar 

  4. S. Chopra, M.R. Rao and E.R. Gorres, Solving the Steiner Tree Problem on a Graph Using Branch and Cut, ORSA Journal on Computing 4 (1992), pp.320–335.

    Article  MATH  Google Scholar 

  5. E.W. Dijkstra, A Note on Two Problems in Connexion with Graphs, Numerische Mathematik 1 (1959), pp. 269–271.

    Article  MathSciNet  MATH  Google Scholar 

  6. C.W. Duin and A. Volgenant, An Edge Elimination Test for the Steiner Problem in Graphs, Operations Research Letters 8 (1989), pp. 79–83.

    Article  MathSciNet  MATH  Google Scholar 

  7. C.W. Duin and A. Volgenant, Reduction Tests for the Steiner Problem in Graphs, Networks 19 (1989), pp. 549–567.

    Article  MathSciNet  MATH  Google Scholar 

  8. C.W. Duin, Steiner’s Problem in Graphs, PhD Thesis University of Amsterdam (1993).

    Google Scholar 

  9. C.W. Duin, Reducing the Graphical Steiner Problem with a Sensitivity Test, to appear in Proceedings of DIMACS workshop on Network Design (1997)

    Google Scholar 

  10. Duin, C.W. and S. Voss, Efficient Path and Vertex Exchange in Steiner Tree Algorithms, Networks 29 (1997), pp. 89–105.

    Article  MathSciNet  MATH  Google Scholar 

  11. Dreyfus, S.E. and R.A. Wagner, The Steiner Problem in Graphs, Networks 1 (1972) pp. 195–207.

    Article  MathSciNet  MATH  Google Scholar 

  12. M.L. Fredman and R.E. Tarjan, Fibonacci Heaps and Their Uses in improved Network Optimization Algorithms, Journal of the ACM 6 (1987), pp. 596–615

    Article  MathSciNet  Google Scholar 

  13. Gomory, R.E. and T.C. Hu (1961), Multi-Terminal Network Flows, Journal of SIAM 9, pp. 551–556.

    MathSciNet  MATH  Google Scholar 

  14. Hwang, F.K., D.S. Richards and P. Winter, The Steiner Tree Problem, Annals of Discrete Mathematics 53 (1992).

    Google Scholar 

  15. T. Koch and A. Martin, Solving Steiner Tree Problems in Graphs to Optimality, to appear in Networks

    Google Scholar 

  16. K. Mehlhorn, A Faster Approximation Algorithm for the Steiner Problem in Graphs, Information Processing Letters 27 (1988), pp.125–128.

    Article  MathSciNet  MATH  Google Scholar 

  17. Polzin, T. and Daneshmand S.V., Improved algorithms for the Steiner Problem in Networks, Technical Report 06/1998, Theoretische Informatik Universität Mannheim (1998).

    Google Scholar 

  18. P.M. Spira, On Finding and Updating Spanning Trees and Shortest Paths SIAM Journal on Computing 4 (1975), pp. 375–380.

    Article  MathSciNet  MATH  Google Scholar 

  19. P Winter, The Steiner Problem in Networks: A Survey, Networks 17 (1987), pp. 185–212.

    Article  Google Scholar 

  20. P Winter, Reductions for the Rectilinear Steiner tree Problem, Networks 26 (1987), pp. 187–198.

    Article  Google Scholar 

  21. Wong, R.T., A dual ascent based approach for the Steiner tree problem in a directed graph, Mathematical Programming 28 (1984), pp. 271–287.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Duin, C. (2000). Preprocessing the Steiner Problem in Graphs. In: Du, DZ., Smith, J.M., Rubinstein, J.H. (eds) Advances in Steiner Trees. Combinatorial Optimization, vol 6. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3171-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3171-2_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4824-3

  • Online ISBN: 978-1-4757-3171-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics