Skip to main content

Heuristics for Nonlinear Assignment Problems

  • Chapter
Nonlinear Assignment Problems

Part of the book series: Combinatorial Optimization ((COOP,volume 7))

Abstract

Given two sets of elements, assignment problems require a mapping of the elements of one set to those of the other. Distinguishing between bijective and injective mappings we may classify two main areas, i.e., assignment and semiassignment problems. Nonlinear assignment problems (NAPs) are those (semi-) assignment problems where the objective function is nonlinear.

In combinatorial optimization many NAPs are natural extensions of the linear (semi-) assignment problem and include, among others, the quadratic assignment problem (QAP) and its variants. Due to the intrinsic complexity not only of the QAP and related NAPs heuristics are a primary choice when it comes to the successful solution of these problems in time boundaries deemed practical. In this paper we survey existing heuristic approaches for various NAPs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Aarts, E. and Lenstra, J., editors (1997). Local Search in Combinatorial Optimization. Wiley, Chichester.

    MATH  Google Scholar 

  2. Ahuja, R., Orlin, J., and Tivari, A. (1995). A greedy genetic algorithm for the quadratic assignment problem. Working paper 3826–95, Sloan School of Management, MIT.

    Google Scholar 

  3. Angel, E. and Zissimopoulos, V. (1998). On the quality of local search for the quadratic assignment problem. Discrete Applied Mathematics, 82:15–25.

    Article  MathSciNet  MATH  Google Scholar 

  4. Balas, E. and Saltzman, M. (1991). An algorithm for the three-index assignment problem. Operations Research, 39:150–161.

    Article  MathSciNet  MATH  Google Scholar 

  5. Bandelt, H.-J., Crama, Y., and Spieksma, F. (1994). Approximation algorithms for multidimensional assignment problems with decomposable costs. Discrete Applied Mathematics, 49:25–50.

    Article  MathSciNet  MATH  Google Scholar 

  6. Bartolomei-Suarez, S. and Egbelu, P. (2000). Quadratic assignment problem with adaptable material handling devices. International Journal of Production Research, 38:855–874.

    Article  MATH  Google Scholar 

  7. Battiti, R. (1996). Reactive search: Toward self-tuning heuristics. In Rayward-Smith, V., Osman, I., Reeves, C., and Smith, G., editors, Modern Heuristic Search Methods, pages 61–83, Chichester. Wiley.

    Google Scholar 

  8. Battiti, R. and Tecchiolli, G. (1992). Parallel biased search for combinatorial optimization: genetic algorithms and tabu. Microprocessors and Microsystems, 16:351–367.

    Article  Google Scholar 

  9. Battiti, R. and Tecchiolli, G. (1994a). The reactive tabu search. ORSA Journal on Computing, 6:126–140.

    Article  MATH  Google Scholar 

  10. Battiti, R. and Tecchiolli, G. (1994b). Simulated annealing and tabu search in the long run: a comparison on QAP tasks. Computer and Mathematical Applications, 28:1–8.

    Article  MATH  Google Scholar 

  11. Bazaraa, M. and Kirca, O. (1983). A branch-andbound heuristic for solving the quadratic assignment problem. Naval Research Logistics Quarterly, 30:287–304.

    Article  MathSciNet  MATH  Google Scholar 

  12. Bazaraa, M. and Sherali, H. (1980). Bender’s partitioning scheme applied to a new formulation of the quadratic assignment problem. Naval Research Logistics Quarterly, 27:29–41.

    Article  MathSciNet  MATH  Google Scholar 

  13. Bersini, H. and Varela, F. (1991). The immune recruitment mechanism: A selective evolutionary strategy. In Proceedings of the 4th International Conference on GeneticAlgorithms, San Mateo. Morgan Kaufmann.

    Google Scholar 

  14. Block, T. (1978). A new construction algorithm for facilities layout. Journal of Engineering Production, 2:111–126.

    Google Scholar 

  15. Boender, C., Kan, A. R., Timmer, A., and Stougie, L. (1982). A stochastic method for global optimization. Mathematical Programming, 22:125–140.

    Article  MathSciNet  MATH  Google Scholar 

  16. Bölte, A. (1994). Modelle und Verfahren zur innerbetrieblichen Standortplanung. Physica, Heidelberg.

    Book  Google Scholar 

  17. Bonomi, E. and Lutton, J.-L. (1986). The asymptotic behavior of quadratic sum assignment problems: A statistical mechanics approach. European Journal of Operational Research, 26:295–300.

    Article  MathSciNet  MATH  Google Scholar 

  18. Brown, E., Huntley, L., and Spillance, R. (1989). A parallel genetic heuristic for the quadratic assignment problem. In Schaffer, J., editor, Proceedings of the 3rd International Conference on Genetic Algorithms, Arlington, pages 406–415, San Mateo. Morgan Kaufmann.

    Google Scholar 

  19. Bruijs, P. (1984). On the quality of heuristic solutions to a 19x19 quadratic assignment problem. European Journal of Operational Research, 17:21–30.

    Article  MathSciNet  MATH  Google Scholar 

  20. Buffa, E., Armour, G., and Vollmann, T. (1964). Allocating facilities with CRAFT. Harvard Business Review, 42 (2):136–158.

    Google Scholar 

  21. Burkard, R. and Bönniger, T. (1983). A heuristic for quadratic boolean programs with applications to quadratic assignment problems. European Journal of Operational Research, 13:374–386.

    Article  MathSciNet  MATH  Google Scholar 

  22. Burkard, R. and Çela, E. (1995). Heuristics for biquadratic assignment problems and their computational comparison. European Journal of Operational Research, 83:283–300.

    Article  MATH  Google Scholar 

  23. Burkard, R. and Çela, E. (1998). Quadratic and three-dimensional assignments: An annotated bibliography. In Dell’Amico, M., Maffioli, F., and Martello, S., editors, Annotated Bibliographies in Combinatorial Optimization, pages 373–392, Chichester. Wiley.

    Google Scholar 

  24. Burkard, R., Çela, E., and Klinz, B. (1994). On the biquadratic assignment problem. In Pardalos, P. and Wolkowicz, H., editors, Quadratic Assignment and Related Problems, pages 117–146, Providence. AMS.

    Google Scholar 

  25. Burkard, R., Çela, E., Pardalos, P., and Pitsoulis, L. (1998). The quadratic assignment problem. In Pardalos, P. and Du, D.-Z., editors, Handbook of Combinatorial Optimization, pages 241–338, Boston. Kluwer.

    Google Scholar 

  26. Burkard, R. and Derigs, U. (1980). Assignment and matching problems: Solution methods with FORTRAN programs, volume 184 of Lecture Notes in Economics and Mathematical Systems. Springer, Berlin.

    MATH  Google Scholar 

  27. Burkard, R. and Fincke, U. (1982). On random quadratic bottleneck assignment problems. Mathematical Programming, 23:227–232.

    Article  MathSciNet  MATH  Google Scholar 

  28. Burkard, R. and Fincke, U. (1983). The asymptotic probabilistic behavior of quadratic sum assignment problems. Zeitschrift für Operations Research, 27:73–81.

    MathSciNet  MATH  Google Scholar 

  29. Burkard, R., Karisch, S., and Rendl, F. (1991). QAPLIB - a quadratic assignment problem library. European Journal of Operational Research, 55:115 – 119.

    Article  MATH  Google Scholar 

  30. Burkard, R., Karisch, S., and Rendl, F. (1997). QAPLIB - a quadratic assignment problem library. Journal of Global Optimization, 10:391–403.

    Google Scholar 

  31. Burkard, R. and Rendl, F. (1984). A thermodynamically motivated simulation procedure for combinatorial optimization problems. European Journal of Operational Research, 17:169–174.

    Article  MATH  Google Scholar 

  32. Burkard, R. and Stratmann, K.-H. (1978). Numerical investigations on quadratic assignment problems. Naval Research Logistics Quarterly, 25:129–148.

    Article  MATH  Google Scholar 

  33. Çela, E. (1998). The QuadraticAssignmentProblem:Theory andAlgorithms. Kluwer, Dordrecht.

    MATH  Google Scholar 

  34. Chakrapani, J. and Skorin-Kapov, J. (1992). A connectionist approach to the quadratic assignment problem. Computers & Operations Research, 19:287–295.

    Article  MATH  Google Scholar 

  35. Chakrapani, J. and Skorin-Kapov, J. (1993). Massively parallel tabu search for the quadratic assignment problem. Annals of Operations Research, 41:327–342.

    Article  MATH  Google Scholar 

  36. Cheh, K., Goldberg, J., and Askin, R. (1991). A note on the neighborhood structure in simulated annealing. Computers & Operations Research, 18:537–547.

    Article  MATH  Google Scholar 

  37. Chhajed, D. and Lowe, T. (1992). M-median and m-center problems with mutual communication: solvable special cases. Operations Research, 40:56–66.

    Article  MathSciNet  Google Scholar 

  38. Chiang, W.-C. and Chiang, C. (1998). Intelligent local search strategies for solving facility layout problems with the quadratic assignment problem formulation. European Journal of Operational Research, 106:457–488.

    Article  MATH  Google Scholar 

  39. Choi, W., Kang, H., and Baek, T. (1999). A turbine-blade balancing problem. International Journal of Production Economics, 6061:405–410.

    Article  Google Scholar 

  40. Colorni, A. and Maniezzo, V. (1999). The ant system applied to the quadratic assignment problem. IEEE Transactions on Knowledge and Data Engineering, 11:769–778.

    Article  Google Scholar 

  41. Connolly, D. (1990). An improved annealing scheme for the QAP. European Journal of Operational Research, 46:93–100.

    Article  MathSciNet  MATH  Google Scholar 

  42. Conway, D. and Venkataramanan, M. (1994). Genetic search and the dynamic facility layout problem. Computers & Operations Research, 21:955–960.

    Article  MATH  Google Scholar 

  43. Crama, Y. and Spieksma, F. (1992). Approximation algorithms for three-dimensional assignment problems with triangle inequalities. European Journal of Operational Research, 60:273–279.

    Article  MATH  Google Scholar 

  44. Cung, V.-D., Mautor, T., Michelon, P., and Tavares, A. (1996). A scatter search based approach for the quadratic assignment problem. Working paper 96/037, PRiSM Laboratory, University of Versailles.

    Google Scholar 

  45. Daduna, J. and Voß, S. (1995). Practical experiences in schedule synchronization. In Daduna, J., Branco, I., and Paixao, J., editors, Computer-Aided Transit Scheduling, volume 430 of Lecture Notes in Economics and Mathematical Systems, pages 39–55. Springer, Berlin.

    Chapter  Google Scholar 

  46. de Abreu, N., Querido, T., and Boaventura-Netto, P. (1999). REDINV- SA: A simulated annealing for the quadratic assignment problem. RAIRO Recherche Operationelle, 33:249–274.

    Article  MATH  Google Scholar 

  47. Dell’Amico, M., Lodi, A., and Maffioli, F. (1999). Solution of the cumulative assignment problem with a well-structured tabu search method. Journal of Heuristics, 5:123–143.

    Article  MATH  Google Scholar 

  48. Derigs, U., Kabath, M., and Zils, M. (1999). Adaptive genetic algorithms for dynamic autoconfiguration of genetic search algorithms. In Voss, S., Martello, S., Osman, I., and Roucairol, C., editors, Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization, pages 231–248. Kluwer, Boston.

    Chapter  Google Scholar 

  49. Domschke, W. (1989). Schedule synchronization for public transit networks. OR Spektrum, 11:17–24.

    Article  MATH  Google Scholar 

  50. Domschke, W. and Drexl, A. (1996). Logistik: Standorte, fourth ed. Oldenbourg, München.

    Google Scholar 

  51. Domschke, W., Forst, P., and Voß, S. (1992). Tabu search techniques for the quadratic semi-assignment problem. In Fandel, G., Gulledge, T., and Jones, A., editors, New Directioris for Operations Research in Manufacturing, pages 389– 405. Springer, Berlin.

    Google Scholar 

  52. Domschke, W. and Krispin, G. (1997). Location and layout planning — a survey. OR Spektrum, 19:181–202.

    Article  MathSciNet  MATH  Google Scholar 

  53. Dorigo, M., Maniezzo, V., and Colorni, A. (1999). Ant system: Optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man and Cybernetics, 26:29–41.

    Google Scholar 

  54. Dowsland, K. (1993). Simulated annealing. In Reeves, C., editor, Modern Heuristic Techniques for Combinatorial Problems, pages 20–69. Blackwell: Halsted Pr.

    Google Scholar 

  55. Dueck, G. and Scheuer, T. (1990). Threshold accepting: a general purpose optimization algorithm appearing superior to simulated annealing. Journal of Computational Physics, 90:161–175.

    Article  MathSciNet  MATH  Google Scholar 

  56. Duin, C. and Voß, S. (1999). The pilot method, a strategy for heuristic repetition with application to the Steiner problem in graphs. Networks, 34:181–191.

    Article  MathSciNet  MATH  Google Scholar 

  57. Dutta, A., Koehler, G., and Whinston, A. (1982). On optimal allocation in a distributed processing environment. Management Science, 28:839–853.

    Article  MATH  Google Scholar 

  58. Dutta, K. and Sahu, S. (1982). A multi-goal heuristic for facilities design problem: MUGHAL. International Journal of Production Research, 20:147–154.

    Article  Google Scholar 

  59. Dyer, M., Frieze, A., and McDiarmid, C. (1986). On linear programs with random costs. Mathematical Programming, 35:3–16.

    Article  MathSciNet  MATH  Google Scholar 

  60. Edwards, H., Gillett, B., and Hale, M. (1970). Modular allocation technique (MAT). Management Science, 17:161–169.

    Article  Google Scholar 

  61. Elshafei, A. (1977). Hospital layout as a quadratic assignment problem. Operational Research Quarterly, 28:167–179.

    Article  MATH  Google Scholar 

  62. Ernst, W. (1978). Verfahren zur Fabrikplanung im MenschRechner-Dialog am Bildschirm. Krausskopf, Mainz.

    Google Scholar 

  63. Fathi, Y. and Ginjupalli, K. (1993). A mathematical model and a heuristic procedure for the turbine balancing problem. European Journal of Operational Research, 63:336–342.

    Article  Google Scholar 

  64. Feo, T., Venkatraman, K., and Bard, J. (1991). A grasp for a difficult single machine scheduling problem. Computers & Operations Research, 18:635–643.

    Article  MATH  Google Scholar 

  65. Fiechter, C., Rogger, A., and de Werra, D. (1992). Basic ideas of tabu search with an application to traveling salesman and quadratic assignment. Ricerca Operativa, 62:5–28.

    Google Scholar 

  66. Fink, A. and Voß, S. (1998). Applications of modem heuristic search methods to continuous flow-shop scheduling problems. Working paper, Technische Universität Braunschweig, Germany.

    Google Scholar 

  67. Fink, A. and Voß, S. (1999). Generic metaheuristics application to industrial engineering problems. Computers & Industrial Engineering, 37:281–284.

    Article  Google Scholar 

  68. Fleurent, C. and Ferland, J. (1994). Genetic hybrids for the quadratic assignment problem. In Pardalos, P. and Wolkowicz, H., editors, Quadratic Assignment and Related Problems, volume 16 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 173–187. American Mathematical Society, Providence.

    Google Scholar 

  69. Fleurent, C. and Glover, F. (1999). Improved constructive multistart strategies for the quadratic assignment problem using adaptive memory. INFORMS Journal on Computing, 11:198–204.

    Article  MathSciNet  MATH  Google Scholar 

  70. Frenk, J., van Houweninge, M., and Kan, A. R. (1985). Asymptotic properties of the quadratic assignment problem. Mathematics of Operations Research, 16:223–239.

    Google Scholar 

  71. Frieze, A. and Yadegar, J. (1981). An algorithm for solving 3-dimensional assignment problems with applications to scheduling a teaching practice. Operations Research, 32:989–995.

    MATH  Google Scholar 

  72. Frieze, A., Yadegar, J., El-Horbaty, S., and Parkinson, D. (1989). Algorithms for assignment problems on an array processor. Parallel Computing, 11:151–162.

    Article  MathSciNet  MATH  Google Scholar 

  73. Gambardella, L., Taillard, E., and Dorigo, M. (1999). Ant colonies for the QAP. Journal of the Operational Research Society, 50:167–176.

    MATH  Google Scholar 

  74. Gavish, B. (1991). Manifold search techniques applied to quadratic assignment problems (QAP). Working paper, Owen Graduate School of Management, Vanderbilt University, Nashville.

    Google Scholar 

  75. Gen, M., Ida, K., and Lee, C.-Y. (1999). Hybridized neural network and genetic algorithms for solving nonlinear integer programming problem. In SEAL’98, volume 1585 of Lecture Notes in Computer Science, pages 421–429. Springer, Berlin.

    Google Scholar 

  76. Gilmore, P. (1962). Optimal and suboptimal algorithms for the quadratic assignment problem. J. SIAM, 10:305–313.

    MathSciNet  MATH  Google Scholar 

  77. Glover, F. (1995). Scatter search and star-paths: beyond the genetic metaphor. OR Spektrum, 17:125–137.

    Article  MATH  Google Scholar 

  78. Glover, F. and Laguna, M. (1997). Tabu Search. Kluwer, Dordrecht.

    Book  MATH  Google Scholar 

  79. Goldberg, D. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading.

    MATH  Google Scholar 

  80. Golden, B. and Skiscim, C. (1986). Using simulated annealing to solve routing and location problems. Naval Research Logistics Quarterly, 33:261–279.

    Article  MathSciNet  MATH  Google Scholar 

  81. Graves, G. and Whinston, A. (1970). An algorithm for the quadratic assignment problem. Management Science, 17:453–471.

    Article  Google Scholar 

  82. Haghani, A. and Chen, M.-C. (1998). Optimizing gate assignments at airport terminals. Transportation Research A, 32:437–454.

    Google Scholar 

  83. Hamam, Y. and Hindi, K. (2000). Assignment of program modules to processors: A simulated annealing approach. European Journal of Operational Research, 122:509–513.

    Article  MATH  Google Scholar 

  84. Heragu, S. (1997). Facilities Design. PWS, Boston.

    Google Scholar 

  85. Heragu, S. and Alfa, A. (1992). Experimental analysis of simulated annealing based algorithms for the facility layout problem. European Journal of Operational Research, 57:190–202.

    Article  MATH  Google Scholar 

  86. Hillier, F. and Conners, M. (1966). Quadratic assignment problem algorithms and the location of indivisable facilities. Management Science, 13:42–57.

    Article  Google Scholar 

  87. Holland, J. (1975). Adaptation in Natural and Artificial Systems. The University of Michigan Press, Ann Arbor.

    Google Scholar 

  88. Huntley, C. and Brown, D. (1991). A parallel heuristic for quadratic assignment problems. Computers & Operations Research, 18:275–289.

    Article  MATH  Google Scholar 

  89. Jajodia, S., Minis, I., Harhalakis, G., and Proth, J. (1992). CLASS: Computerized layout solutions using simulated annealing. International Journal of Production Research, 30:95–108.

    Article  MATH  Google Scholar 

  90. Johnson, D., Aragon, C., McGeoch, L., and Schevon, C. (1989). Optimization by simulated annealing: an experimental evaluation; part 1, graph partitioning. Operations Research, 37:865–892.

    Article  MATH  Google Scholar 

  91. Johnson, D., Papadimitriou, C., and Yannakakis, M. (1988). How easy is local search? J. Comput. System Sci., 37:79–100.

    Article  MathSciNet  MATH  Google Scholar 

  92. Kelly, J., Laguna, M., and Glover, F. (1994). A study of diversification strategies for the quadratic assignment problem. Computers & Operations Research, 21:885–893.

    Article  MATH  Google Scholar 

  93. Kirkpatrick, S., Jr., C. G., and Vecchi, M. (1983). Optimization by simulated annealing. Science, 220:671–680.

    Article  MathSciNet  MATH  Google Scholar 

  94. Klemt, W.-D. and Stemme, W. (1988). Schedule synchronization for public transit networks. In Daduna, J. and Wren, A., editors, Computer-Aided Transit Scheduling, volume 308 of Lecture Notes in Economics and Mathematical Systems, pages 327–335. Springer, Berlin.

    Google Scholar 

  95. Kusiak, A. and Heragu, S. (1987). The facility layout problem. European Journal of Operational Research, 29:229–251.

    Article  MathSciNet  MATH  Google Scholar 

  96. Land, A. (1963). A problem of assignment with interrelated costs. Operational Research Quarterly, 14:185–198.

    Article  Google Scholar 

  97. Laporte, G. and Mercure, H. (1988). Balancing hydraulic turbine runners: A quadratic assignment problem. European Journal of Operational Research, 35:378–381.

    Article  Google Scholar 

  98. Lashari, R. and Jaisingh, S. (1980). A heuristic approach to quadratic assignment problems. Journal of the Operational Research Society, 31:845–850.

    Google Scholar 

  99. Laursen, P. (1993). Simulated annealing for the QAP - optimal tradeoff between simulation time and solution quality. European Journal of Operational Research, 69:238 – 243.

    Article  Google Scholar 

  100. Lawler, E. (1963). The quadratic assignment problem. Management Science, 9:586–599.

    Article  MathSciNet  MATH  Google Scholar 

  101. Lee, R. and Moore, J. (1967). CORELAP - computerized relationship layout planning. Journal of Industrial Engineering, 18:195–200.

    Google Scholar 

  102. Li, Y. and Pardalos, P. (1992). Generating quadratic assignment test problems with known optimal permutations. Computational Optimization and Applications, 1:163–184.

    Article  MathSciNet  MATH  Google Scholar 

  103. Li, Y., Pardalos, P., and Resende, M. (1994). A greedy randomized adaptive search procedure for the quadratic assignment problem. In Pardalos, P. and Wolkowicz, H., editors, Quadratic Assignment and Related Problems, volume 16 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 237–261. American Mathematical Society, Providence.

    Google Scholar 

  104. Lutton, J. and Bonomi, E. (1986). The asymptotic behavior of a quadratic sum assignment problems: a sta-tistical mechanics approach. European Journal of Operational Research, 26:295–300.

    Article  MathSciNet  MATH  Google Scholar 

  105. Magirou, V. and Milis, J. (1989). An algorithm for the multiprocessor assignment problem. Operations Research Letters, 8:351–356.

    Article  MathSciNet  MATH  Google Scholar 

  106. Magos, D. (1996). Tabu search for the planar three-index assignment problem. Journal of Global Optimization, 8:35–48.

    Article  MathSciNet  MATH  Google Scholar 

  107. Magos, D. and Miliotis, P. (1994). An algorithm for the planar three-index assignment problem. European Journal of Operational Research, 77:141–153.

    Article  MATH  Google Scholar 

  108. Malucelli, F. (1993). Quadratic assignment problems: solution methods and applications. PhD thesis, Universita di Pisa.

    Google Scholar 

  109. Maniezzo, V. (1999). Exact and approximate nondeterministic tree-search procedures for the quadratic assignment problem. INFORMS Journal on Computing, 11:358–369.

    Article  MathSciNet  MATH  Google Scholar 

  110. Maniezzo, V., Dorigo, M., and Colorni, A. (1995). Algodesk: An experimental comparison of eight evolutionary heuristics applied to the quadratic assignment problem. European Journal of Operational Research, 81:188–204.

    Article  MATH  Google Scholar 

  111. Mason, A. and Rönnqvist, M. (1997). Solution methods for the balancing ofjet turbines. Computers & Operations Research, 24:153–167.

    Article  MATH  Google Scholar 

  112. Mavridou, T., Pardalos, P., Pitsoulis, L., and Resende, M. (1998). A GRASP for the biquadratic assignment problem. European Journal of Operational Research, 105:613–621.

    Article  MATH  Google Scholar 

  113. Moretti Tomasin, E., Pianca, P., and Sorato, A. (1988). Heuristic algorithms for the quadratic semi-assignment problem. Ricerca Operativa, 18:65–89.

    Google Scholar 

  114. Mühlenbein, H. (1989). Varying the probability of mutation in the genetic algorithm. In Schaffer, J., editor, Proceedings of the Third International Conference on Genetic Algorithms, pages 416–421, San Mateo. Morgan Kaufmann.

    Google Scholar 

  115. Müller-Merbach, H. (1970). Optimale Reihenfolgen. Springer, Berlin.

    Book  Google Scholar 

  116. Murphey, R., Pardalos, P., and Pitsoulis, L. (1998). A parallel GRASP for the data association multidimensional assignment problem. In Pardalos, P., editor, Parallel Processing ofDiscrete Problems, volume 106 of IMA Volumes in Mathematics and its Applications, pages 159–180. Springer, Berlin.

    Google Scholar 

  117. Murtagh, B., Jefferson, T., and Somprasit, V. (1982). A heuristic procedure for solving the quadratic assignment problem. European Journal of Operational Research, 9:71–76.

    Article  MATH  Google Scholar 

  118. Murthy, K., Pardalos, P., and Li, Y. (1992). A local search algorithm for the quadratic assignment problem. Informatica, 3:524–538.

    MathSciNet  MATH  Google Scholar 

  119. Nissen, V. (1993). A new efficient evolutionary algorithm for the quadratic assignment problem. In Hansmann, K.-W., Bachem, A., Jarke, M., Katzenberger, W., and Marusev, A., editors, Operations Research Proceedings 1992, pages 259 – 267, Berlin. Springer.

    Google Scholar 

  120. Nissen, V. (1994). Evolutionäre Algorithmen. DUV, Wiesbaden.

    Book  MATH  Google Scholar 

  121. Nissen, V. and Paul, H. (1993). A modification of threshold accepting and its application to the quadratic assignment problem. OR Spektrum, 17:205–210.

    Google Scholar 

  122. Nugent, C., Vollmann, T., and Ruml, J. (1968). An experimental comparison of techniques for the assignment of facilities to locations. Operations Research, 16:150–173.

    Article  Google Scholar 

  123. Pardalos, P., Burkard, R., and Wolkowicz, H. (1994). The quadratic assignment problem: A survey and recent developments. In Pardalos, P. and Wolkowicz, H., editors, Quadratic Assignment and Related Problems, pages 142, Providence. AMS.

    Google Scholar 

  124. Pardalos, P., Pitsoulis, L., and Resende, M. (1995). A parallel grasp implementation for solving the quadratic assignment problem. In Ferreira, A. and Rolim, J., editors, Parallel Algorithms for Irregular Problems: State of the Art, pages 115–133. Kluwer, Boston.

    Google Scholar 

  125. Pardalos, P., Pitsoulis, L., and Resende, M. (1997). Fortran subroutines for approximate solution of sparse quadratic assignment problems using grasp. ACM Transactions on Mathematical Software, 23:196–208.

    Article  MathSciNet  MATH  Google Scholar 

  126. Pardalos, P. and Wolkowicz, H., editors (1994). Quadratic Assignment and Related Problems, volume 16 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science. American Mathematical Society, Providence.

    MATH  Google Scholar 

  127. Paulli, J. (1993). Information utilization in simulated annealing and tabu search. Committee on Algorithms Bulletin, 22:28–34.

    Google Scholar 

  128. Peng, T., Huanchen, W., and Dongme, Z. (1996). Simulated annealing for the quadratic assignment problem: A further study. Computers & Industrial Engineering, 31:925–928.

    Article  Google Scholar 

  129. Pitsoulis, L., Pardalos, P., and Hearn, D. (2000). Approximate solutions to the turbine balancing problem. European Journal of Operational Research, (to appear)

    Google Scholar 

  130. Poore, A. and Rijavec, N. (1994). A parallel heuristic for quadratic assignment problems. Journal of Computing and Information Technology, 2:25–37.

    Google Scholar 

  131. Queyranne, M. (1986). Performance ratio of polynomial algorithms for triangle-inequality quadratic assignment problems. OperationsResearchLetters, 4:231–234.

    MathSciNet  MATH  Google Scholar 

  132. Resende, M., Pardalos, P., and Li, Y. (1996). Fortran subroutines for approximate solution of dense quadratic assignment problems using grasp. ACM Transactions on Mathematical Software, 22:104–118.

    Article  MATH  Google Scholar 

  133. Rhee, W. (1988a). A note on asymptotic properties of the quadratic assignment problem. Operations Research Letters, 7:197–200.

    Article  MathSciNet  MATH  Google Scholar 

  134. Rhee, W. (1988b). Stochastic analysis of the quadratic assignment problem. Mathematics of Operations Research, 16:223–239.

    Article  MathSciNet  Google Scholar 

  135. Rosenblatt, M. (1979). The facilities layout problem: A multi-goal approach. International Journal ofProduction Research, 17:323–332.

    Article  Google Scholar 

  136. Sahni, S. and Gonzalez, T. (1976). P-complete approximation problems. Journal of the ACM (Association for Computing Machinery), 23:555–565.

    Article  MathSciNet  MATH  Google Scholar 

  137. Schäffer, A. and Yannakakis, M. (1991). Simple local search problems that are hard to solve. SIAM Journal on Computing, 20:56–87.

    Article  MathSciNet  MATH  Google Scholar 

  138. Seehof, J. and Evans, W. (1967). Automated layout design program. Journal of Industrial Engineering, 18:690–695.

    Google Scholar 

  139. Sharpe, R., Marksjo, B., Mitchell, J., and Crawford, J. (1985). An interactive model for the layout of buildings. Applied Mathematical Modeling, 9:207–214.

    Article  Google Scholar 

  140. Simeone, B. (1986). An asymptotically exact algorithm for equipartition problems. Discrete Applied Mathematics, 14:283–293.

    Article  MathSciNet  MATH  Google Scholar 

  141. Sinclair, M. (1993). Comparison of the performance of modem heuristics for combinatorial optimization on real data. Computers & Operations Research, 20:687–695.

    Article  MATH  Google Scholar 

  142. Skorin-Kapov, J. (1990). Tabu search applied to the quadratic assignment problem. ORSA Journal on Computing, 2:33–45.

    Article  MATH  Google Scholar 

  143. Skorin-Kapov, J. (1994). Extensions of a tabu search adaptation to the quadratic assignment problem. Computers & Operations Research, 21:855–866.

    Article  MathSciNet  MATH  Google Scholar 

  144. Smith, K. (1995). Solving the generalized quadratic assignment problem using a self-organizing process. In Proceedings of the IEEE International Conference on Neural Networks (ICNN), pages 1876–1879. Vol. 4, Perth.

    Chapter  Google Scholar 

  145. Smith, K. (1999). Neural networks for combinatorial optimization: A review of more than a decade of research. INFORMS Journal on Computing, 11:15–34.

    Article  MathSciNet  MATH  Google Scholar 

  146. Smith, K., Palaniswami, M., and Krishnamoorthy, M. (1998). Neural techniques for combinatorial optimization with applications. IEEE Transactions on Neural Networks, 9:1301–1318.

    Article  Google Scholar 

  147. Sondergeld, L. and Voß, S. (1993). Solving quadratic assignment problems using the cancellation sequence method. Working paper, TH Darmstadt.

    Google Scholar 

  148. Sondergeld, L. and Voß, S. (1996). A star-shaped diversification approach in tabu search. In Osman, I. and Kelly, J., editors, Meta-Heuristics: Theory and Applications, pages 489–502. Kluwer, Boston.

    Chapter  Google Scholar 

  149. Starke, J., Schanz, M., and Haken, H. (1999). Treatment of combinatorial optimization problems using selection equations with cost terms. part ii. NP-hard three-dimensional assignment problems. Physica D, 134:242–252.

    Article  MathSciNet  MATH  Google Scholar 

  150. Steinberg, L. (1961). The backboard wiring problem: A placement algorithm. SIAM Review, 3:37–50.

    Article  MathSciNet  MATH  Google Scholar 

  151. Stützle, T. and Hoos, H. (1999). The max-min ant system and local search for combinatorial optimization problems. In Voss, S., Martello, S., Osman, I., and Roucairol, C., editors, Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization, pages 313–329. Kluwer, Boston.

    Chapter  Google Scholar 

  152. Taillard, E. (1991). Robust taboo search for the quadratic assignment problem. Parallel Computing, 17:443–455.

    Article  MathSciNet  Google Scholar 

  153. Taillard, E. (1995). Comparison of iterative searches for the quadratic assignment problem. Location Science, 3:87–105.

    Article  MATH  Google Scholar 

  154. Taillard, E. (1998). FANT: Fast ant system. Working paper, IDSIA, Lugano.

    Google Scholar 

  155. Taillard, E. (2000). An introduction to ant systems. In Laguna, M. and Gonzalez-Velarde, J., editors, Computing Tools for Modeling, Optimization and Simulation, pages 131–144. Kluwer, Boston.

    Chapter  Google Scholar 

  156. Taillard, E. and Voß, S. (1999). Popmusic. Working paper, University of Applied Sciences of Western Switzerland.

    Google Scholar 

  157. Talbi, E.-G., Hafidi, Z., and Geib, J.-M. (1999). Parallel tabu search for large optimization problems. In Voss, S., Martello, S., Osman, I., and Roucairol, C., editors, Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization, pages 345–358. Kluwer, Boston.

    Chapter  Google Scholar 

  158. Tam, K. (1992). Genetic algorithms, function optimization, and facility layout design. European Journal of Operational Research, 63:322–346.

    Article  MATH  Google Scholar 

  159. Tate, D. and Smith, A. (1995). A genetic approach to the quadratic assignment problem. Computers & Operations Research, 22:73–83.

    Article  MATH  Google Scholar 

  160. Torki, A., Yajima, Y., and Enkawa, T. (1996). A low-rank bilinear programming approach for sub-optimal solution of the quadratic assignment problem. European Journal of Operational Research, 94:384–391.

    Article  MATH  Google Scholar 

  161. Tsuchiya, K., Bharitkar, S., and Takefuji, Y. (1996). A neural network approach to facility layout problems. European Journal of Operational Research, 89:556–563.

    Article  MATH  Google Scholar 

  162. Urban, T. (1998). Solution procedures for the dynamic facility layout problem. Annals of Operations Research, 76:323–342.

    Article  MATH  Google Scholar 

  163. Vollmann, T., Nugent, C., and Zartler, R. (1968). A computerized model for office layout. Journal of Industrial Engineering, 19:321–327.

    Google Scholar 

  164. Voß, S. (1992). Network design formulations in schedule synchronization. In Desrochers, M. and Rousseau, J.-M., editors, Computer-Aided Transit Scheduling, volume 386 of Lecture Notes in Economics and Mathematical Systems, pages 137 – 152. Springer, Berlin.

    Google Scholar 

  165. Voß, S. (1993). Tabu search: applications and prospects. In Du, D.-Z. and Pardalos, P., editors, Network Optimization Problems, pages 333 – 353. World Scientific, Singapore.

    Google Scholar 

  166. Voß, S. (1995). Solving quadratic assignment problems using the reverse elimination method. In Nash, S. and Sofer, A., editors, The Impact of Emerging Technologies on Computer Science and Operations Research, pages 281 – 296. Kluwer, Dordrecht.

    Google Scholar 

  167. Voß, S. (1996). Observing logical interdependencies in tabu search: Methods and results. In Rayward-Smith, V., Osman, I., Reeves, C., and Smith, G., editors, Modern Heuristic Search Methods, pages 41–59, Chichester. Wiley.

    Google Scholar 

  168. Wäscher, G. and Chamoni, P. (1987). MICROLAY: An interactive computer program for factory layout planning on microcomputers. European Journal of Operational Research, 31:185–193.

    Article  MATH  Google Scholar 

  169. West, D. (1983). Algorithm 608: Approximate solution of the quadratic assignment problem. ACM Transactions on Mathematical Software, 9:461466.

    Google Scholar 

  170. White, D. (1996). A lagrangean relaxation approach for a turbine design quadratic assignment problem. Journal of the Operational Research Society, 47:766–775.

    MATH  Google Scholar 

  171. Wilhelm, M. and Ward, T. (1987). Solving quadratic assignment problems by ’simulated annealing’ . IIETransactions, 19:107– 119.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Voss, S. (2000). Heuristics for Nonlinear Assignment Problems. In: Pardalos, P.M., Pitsoulis, L.S. (eds) Nonlinear Assignment Problems. Combinatorial Optimization, vol 7. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3155-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3155-2_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4841-0

  • Online ISBN: 978-1-4757-3155-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics