Skip to main content

Semidefinite Programming Approaches to the Quadratic Assignment Problem

  • Chapter

Part of the book series: Combinatorial Optimization ((COOP,volume 7))

Abstract

The Quadratic Assignment Problem, QAP, is arguably the hardest of the NP-hard problems. One of the main reasons is that it is very difficult to get good quality bounds for branch and bound algorithms. We show that many of the bounds that have appeared in the literature can be ranked and put into a unified Semidefinite Programming, SDP, framework. This is done using redundant quadratic constraints and Lagrangian relaxation. Thus, the final SDP relaxation ends up being the strongest.

Research partially supported by The Natural Sciences Engineering Research Council Canada.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, W. and Johnson, T. (1994). Improved linear programming-based lower bounds for the quadratic assignment problem. In Proceedings of the DIMACS Workshop on Quadratic Assignment Problems, volume 16 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 43–75. American Mathematical Society.

    Google Scholar 

  2. Anjos, M. and Wolkowicz, H. (1999). A strengthened SDP relaxation via a second lifting for the Max-Cut problem. Technical Report Research Report, CORR 99–55, University of Waterloo, Waterloo, Ontario. 28 pages.

    Google Scholar 

  3. Anstreicher, K. (1999). Eigenvalue bounds versus semidefinite relaxations for the quadratic assignment problem. Technical report, University of Iowa, Iowa City, IA.

    Google Scholar 

  4. Anstreicher, K. and Brixius, N. (1999). A new bound for the quadratic assignment problem based on convex quadratic programming. Technical report, University of Iowa, Iowa City, IA.

    Google Scholar 

  5. Anstreicher, K., Chen, X., Wolkowicz, H., and Yuan, Y. (1999). Strong duality for a trust-region type relaxation of QAP. Linear Algebra Appl., To appear.

    Google Scholar 

  6. Anstreicher, K. and Wolkowicz, H. (1999). On Lagrangian relaxation of quadratic matrix constraints. SIAM J. Matrix Anal. Appl., To appear.

    Google Scholar 

  7. Assad, A. and Xu, W. (1985). On lower bounds for a class of quadratic {0, 1} programs. Operations Research Letters, 4:175–180.

    Article  MathSciNet  MATH  Google Scholar 

  8. Barker, G. and Carlson, D. (1975). Cones of diagonally dominant matrices. Pacific J. of Math., 57:15–32.

    Article  MathSciNet  MATH  Google Scholar 

  9. Bhatia, R. (1987). Perturbation Bounds for Matrix Eigenvalues : Pitman Research Notes in Mathematics Series 162. Longman, New York.

    MATH  Google Scholar 

  10. Borwein, J. and Wolkowicz, H. (1981). Regularizing the abstract convex program. J. Math. Anal. Appl., 83(2):495–530.

    Article  MathSciNet  MATH  Google Scholar 

  11. Carraresi, P. and Malucelli, F. (1992). A new lower bound for the quadratic assignment problem. Oper.. Res., 40(suppl. 1):S22–S27.

    Article  MathSciNet  Google Scholar 

  12. Carraresi, P. and Malucelli, F. (1994). A reformulation scheme and new lower bounds for the QAP. In Pardalos, P. and Wolkowicz, H., editors, Quadratic assignment and related problems (New Brunswick, NJ, 1993), pages 147–160. Amer. Math. Soc., Providence, RI.

    Google Scholar 

  13. Celis, M., Dennis Jr., J., and Tapia, R. (1984). A trust region strategy for nonlinear equality constrained optimization. In Proceedings of the SIAM Conference on Numerical Optimization, Boulder, CO. Also available as Technical Report TR84–1, Department of Mathematical Sciences, Rice University, Houston, TX.

    Google Scholar 

  14. Edelman, A., Arias, T., and Smith, S. (1999). The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl., 20(2):303–353 (electronic).

    Article  MathSciNet  Google Scholar 

  15. Finke, G., Burkard, R., and Rendl, F. (1987). Quadratic assignment problems. Ann. Discrete Math., 31:61–82.

    MathSciNet  Google Scholar 

  16. Frieze, A. M. and Yadegar, J. (1983). On the quadratic assignment problem. Discrete Applied Mathematics, 5:89–98.

    Article  MathSciNet  MATH  Google Scholar 

  17. Fujie, T. and Kojima, M. (1997). Semidefinite programming relaxation for nonconvex quadratic programs. J. Global Optim., 10(4) : 367–380.

    Article  MathSciNet  MATH  Google Scholar 

  18. Gilmore, P. (1962). Optimal and suboptimal algorithms for the quadratic assignment problem. SIAM Journal on Applied Mathematics, 10:305–313.

    Article  MathSciNet  MATH  Google Scholar 

  19. Grötschel, M., Lovász, L., and Schrijver, A. (1988). Geometric Algorithms and Combinatorial Optimization. Springer Verlag, Berlin-Heidelberg.

    Book  MATH  Google Scholar 

  20. Hadley, S., Rendl, F., and Wolkowicz, H. (1990). Bounds for the quadratic assignment problems using continuous optimization. In Integer Programming and Combinatorial Optimization. University of Waterloo Press.

    Google Scholar 

  21. Hadley, S., Rendl, F., and Wolkowicz, H. (1992). A new lower bound via projection for the quadratic assignment problem. Math. Oper. Res., 17(3):727–739.

    Article  MathSciNet  MATH  Google Scholar 

  22. Helmberg, C., Poljak, S., Rendl, F., and Wolkowicz, H. (1995). Combining semidefinite and polyhedral relaxations for integer programs. In Integer Programming and Combinatorial Optimization (Copenhagen, 1995), pages 124–134. Springer, Berlin.

    Chapter  Google Scholar 

  23. Jünger, M. and Kaibel, V. (1995). A basic study of the qap-polytope. Technical Report Technical Report No. 96.215, Institut für Informatik, Universität zu Köln, Germany.

    Google Scholar 

  24. Karisch, S., Rendl, F., and Wolkowicz, H. (1994). Trust regions and relaxations for the quadratic assignment problem. In Quadratic assignment and related problems (New Brunswick, NJ, 1993), pages 199–219. Amer. Math. Soc., Providence, RI.

    Google Scholar 

  25. Koopmans, T. C. and Beckmann, M. J. (1957). Assignment problems and the location of economic activities. Econometrica, 25:53–76.

    Article  MathSciNet  MATH  Google Scholar 

  26. Kruk, S. and Wolkowicz, H. (1998). SQ2P, sequential quadratic constrained quadratic programming. In xiang Yuan, Y., editor, Advances in Nonlinear Programming, volume 14 of Applied Optimization, pages 177–204. Kluwer, Dordrecht. Proceedings of Nonlinear Programming Conference in Beijing in honour of Professor M.J.D. Powell.

    Chapter  Google Scholar 

  27. Lawler, E. (1963). The quadratic assignment problem. Management Sci., 9:586–599.

    Article  MathSciNet  MATH  Google Scholar 

  28. Li, Y., Pardalos, P., Ramakrishnan, K., and Resende, M. (1994). Lower bounds for the quadratic assignment problem. Ann. Oper Res., 50: 387–410. Applications of combinatorial optimization.

    Article  MathSciNet  MATH  Google Scholar 

  29. Lovász, L. and Schrijver, A. (1991). Cones of matrices and set-functions and 0–1 optimization. SIAM J. Optim., 1(2):166–190.

    Google Scholar 

  30. Pardalos, P., Rendl, F., and Wolkowicz, H. (1994). The quadratic assignment problem: a survey and recent developments. In Pardalos, P. and Wolkowicz, H., editors, Quadratic assignment and related problems (New Brunswick, NJ, 1993), pages 1–42. Amer. Math. Soc., Providence, RI.

    Google Scholar 

  31. Pardalos, P. and Wolkowicz, H., editors (1994). Quadratic Assignment and Related Problems. American Mathematical Society, Providence, RI. Papers from the workshop held at Rutgers University, New Brunswick, New Jersey, May 20–21, 1993.

    MATH  Google Scholar 

  32. Pataki, G. (2000). Geometry of Semidefinite Programming. In Wolkowicz, H., Saigal, R., and Vandenberghe, L., editors, HANDBOOK OF SEMIDEFINITE PROGRAMMING: Theory, Algorithms, and Applications. Kluwer Academic Publishers, Boston, MA. To appear.

    Google Scholar 

  33. Poljak, S., Rendl, F., and Wolkowicz, H. (1995). A recipe for semidefinite relaxation for (0, 1) -quadratic programming. J. Global Optim., 7(1):51–73.

    Article  MathSciNet  MATH  Google Scholar 

  34. Ramana, M., Tuncel, L., and Wolkowicz, H. (1997). Strong duality for semidefinite programming. SIAM J. Optim., 7(3):641–662.

    Article  MathSciNet  MATH  Google Scholar 

  35. Rendl, F. and Wolkowicz, H. (1992). Applications of parametric programming and eigenvalue maximization to the quadratic assignment problem. Math. Programming, 53(1, Ser. A):63–78.

    Article  MathSciNet  MATH  Google Scholar 

  36. Rendl, R. and Wolkowicz, H. (1999). Testing bounds for the quadratic assignment problem. Technical Report in progress, University of Waterloo, Waterloo, Canada.

    Google Scholar 

  37. Resende, M., Ramakrishnan, K., and Drezner, Z. (1995). Computing lower bounds for the quadratic assignment problem with an interior point algorithm for linear programming.Oper. Res., 43(5):781–791.

    Article  MathSciNet  MATH  Google Scholar 

  38. Rijal, M. (1995). Scheduling, design and assignment problems with quadratic costs. PhD thesis, New York University, New York, USA.

    Google Scholar 

  39. Shor, N. (1987). Quadratic optimization problems. Izv.. Akad. Nauk SSSR Tekhn. Kibernet., 222(1):128–139, 222.

    Google Scholar 

  40. Stern, R. and Wolkowicz, H. (1995). Indefinite trust region subproblems and nonsymmetric eigenvalue perturbations. SIAM J. Optim., 5(2):286–313.

    Article  MathSciNet  MATH  Google Scholar 

  41. Stiefel, E. (1935–36). Richtungsfelder und fernparallelismus in n-dimensionalem mannig faltigkeiten. Commentarii Math. Helvetici, 8:305–353.

    Article  MathSciNet  Google Scholar 

  42. Wolkowicz, H. (2000a). A note on lack of strong duality for quadratic problems with orthogonal constraints. Technical report, University of Waterloo.

    Google Scholar 

  43. Wolkowicz, H. (2000b). Semidefinite and Lagrangian relaxations for hard combinatorial problems. In Powell, M., editor, Proceedings of 19th IFIP TC7 CONFERENCE ON System Modeling and Optimization, July, 1999, Cambridge, page 35. Kluwer Academic Publishers, Boston, MA. To appear.

    Google Scholar 

  44. Zhao, Q., Karisch, S., Rendl, F., and Wolkowicz, H. (1998). Semidefinite programming relaxations for the quadratic assignment problem. J. Comb. Optim., 2(1):71–109.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wolkowicz, H. (2000). Semidefinite Programming Approaches to the Quadratic Assignment Problem. In: Pardalos, P.M., Pitsoulis, L.S. (eds) Nonlinear Assignment Problems. Combinatorial Optimization, vol 7. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3155-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3155-2_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4841-0

  • Online ISBN: 978-1-4757-3155-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics