Skip to main content

Polyhedral Methods for the QAP

  • Chapter
Nonlinear Assignment Problems

Part of the book series: Combinatorial Optimization ((COOP,volume 7))

Abstract

For many combinatorial optimization problems investigations of associated polyhedra have led to enormous successes with respect to both theoretical insights into the structures of the problems as well as to their algorithmic solvability. Among these problems are quite prominent NP-hard ones, like, e.g., the traveling salesman problem, the stable set problem, or the maximum cut problem. In this chapter we overview the polyhedral work that has been done on the quadratic assignment problem (QAP). Our treatment includes a brief introduction to the methods of polyhedral combinatorics in general, descriptions of the most important polyhedral results that are known about the QAP, explanations of the techniques that are used to prove such results, and a discussion of the practical results obtained by cutting plane algorithms that exploit the polyhedral knowledge. We close by some remarks on the perspectives of this kind of approach to the QAP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, W. P. and Johnson, T. A. (1994). Improved linear programming-based lower bounds for the quadratic assignment problem. In Pardalos, P. M. and Wolkowicz, H., editors, Quadratic Assignment and Related Problems, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 43–75.

    Google Scholar 

  2. Barvinok, A. I. (1992). Combinatorial complexity of orbits in representations of the symmetric group. Advances in Soviet Mathematics, 9:161–182.

    MathSciNet  Google Scholar 

  3. Brüngger, A., Clausen, J., Marzetta, A., and Perregaard, M. (1996). Joining forces in solving large-scale quadratic assignment problems in parallel. Technical Report DIKU TR-23/96, University of Copenhagen, Copenhagen.

    Google Scholar 

  4. Burkard, R. E., Karisch, S. E., and Rendl, F. (1997). QAPLIB A quadratic assignment problem library. Journal of Global Optimization, 10:391–403. http://serv1.imm.dtu.dk/~sk/qaplib/.

    Article  MathSciNet  MATH  Google Scholar 

  5. Chvátal, V. (1983). Linear Programming. Freeman.

    Google Scholar 

  6. Clausen, J. and Perregaard, M. (1997). Solving large scale quadratic assignment problems in parallel. Comput. Optim. Appl., 8(2):111–127.

    Article  MathSciNet  MATH  Google Scholar 

  7. Deza, M. M. and Laurent, M. (1997). Geometry of Cuts and Metrics. Springer Verlag.

    MATH  Google Scholar 

  8. Edmonds, J. (1965a). Maximum matching and a polyhedron with 0,1-vertices. Journal of Research of the National Bureau of Standards—B, Mathematics and Mathematical Physics, 69B:125–130.

    MathSciNet  Google Scholar 

  9. Edmonds, J. (1965b). Paths, trees, and flowers. Canadian Journal of Mathematics, 17:449–467.

    Article  MathSciNet  MATH  Google Scholar 

  10. Elf, M. (1999). LP-basierte Schranken für quadratische Zuordnungsprobleme mit dünner Zielfunktion. Master’s thesis, Universität zu Köln.

    Google Scholar 

  11. Gilmore, P. C. (1962). Optimal and suboptimal algorithms for the quadratic assignment problem. SIAM Journal on Applied Mathematics, 10:305–313.

    Article  MathSciNet  MATH  Google Scholar 

  12. Grötschel, M., Lovász, L., and Schrijver, A. (1981). The ellipsoid method and its consequences in combinatorial optimization. Combinatorica, 1:169–197.

    Article  MathSciNet  MATH  Google Scholar 

  13. Grötschel, M., Lovász, L., and Schrijver, A. (1988). Geometric Algorithms and Combinatorial Optimization. Springer-Verlag, Heidelberg.

    Book  MATH  Google Scholar 

  14. Grünbaum, B. (1967). Convex Polytopes. Interscience, London. Revised edition: V. Klee and P. Kleinschmidt, Graduate Texts in Mathematics, Springer Verlag.

    MATH  Google Scholar 

  15. Johnson, T. A. (1992). New Linear-Programming Based Solution Procedures for the Quadratic Assignment Problem. PhD thesis, Graduate School of Clemson University.

    Google Scholar 

  16. Jünger, M. and Kaibel, V. (1996). On the SQAPpolytope. Technical Report No. 96.241, Institut für Informatik, Universität zu Köln. Submitted to: SIAM Journal on Optimization.

    Google Scholar 

  17. Jünger, M. and Kaibel, V. (1997a). Boxinequalities for quadratic assignment polytopes. Technical Report 97.285, Angewandte Mathematik und Informatik, Universität zu Köln. Submitted to: Mathematical Programming.

    Google Scholar 

  18. Jünger, M. and Kaibel, V. (1997b). The QAPpolytope and the star-transformation. Technical Report 97.284, Angewandte Mathematik und Informatik, Universität zu Köln. Submitted to: Discrete Applied Mathematics.

    Google Scholar 

  19. Jünger, M., Reinelt, G., and Thienel, S. (1994). Provably good solutions for the traveling salesman problem. ZOR — Mathematical Methods of operations Research, 40:183–217.

    Article  MATH  Google Scholar 

  20. Kaibel, V. (1997). Polyhedral Combinatorics of the Quadratic Assignment Problem. PhD thesis, Universität zu Köln. wwv.math.TU-Berlin.de/~kaibel/diss.html.

    Google Scholar 

  21. Kaibel, V. (1998). Polyhedral combinatorics of QAPs with less objects than locations. In Bixby, R. E., Boyd, E. A., and Rios-Mercado, R. Z., editors, Proceedings of the 6th International IPCO Conference, Houston, Texas., volume 1412 of Lecture Notes in Computer Science, pages 409–422. Springer-Verlag.

    Google Scholar 

  22. Karp, R. M. and Papadimitriou, C. H. (1982). On linear characterizations of combinatorial optimization problems. SIAM Journal on Computing, 11:620–632.

    Article  MathSciNet  MATH  Google Scholar 

  23. Khachiyan, L. G. (1979). A polynomial algorithm in linear programming. Soviet. Math. Dokl., 20:191–194.

    MATH  Google Scholar 

  24. Klee, V. and Kleinschmidt, P. (1995). Convex polytopes and related complexes. In Graham, R. L., Grötschel, M., and Lovász, L., editors, Handbook of Combinatorics, volume 2, chapter 18, pages 875–918. Elsevier Science.

    Google Scholar 

  25. Koopmans, T. C. and Beckmann, M. J. (1957). Assignment problems and the location of economic activities. Econometrica, 25:53–76.

    Article  MathSciNet  MATH  Google Scholar 

  26. Lawler, E. L. (1963). The quadratic assignment problem. Management Science, 9:586–599.

    Article  MathSciNet  MATH  Google Scholar 

  27. Minkowski, H. (1896). Geometrie der Zahlen. Teubner Verlag, Leipzig. Reprinted by Chelsea, New York 1953 and Johnson, New York 1963.

    Google Scholar 

  28. Nemhauser, G. L. and Wolsey, L. A. (1988). Integer and Combinatorial Optimization. Wiley-Interscience Series in Discrete Mathematics and Optimization. John Wiley & Sons, Chichester New York.

    MATH  Google Scholar 

  29. Padberg, M. and Rijal, M. P. (1996). Location, Scheduling, Design and Integer Programming. Kluwer Academic Publishers.

    Book  MATH  Google Scholar 

  30. Padberg, M. W. (1995). Linear Optimization and Extensions. Springer-Verlag, Berlin Heidelberg.

    MATH  Google Scholar 

  31. Padberg, M. W. and Rao, M. R. (1980). The russian method and integer programming. Technical report, CBA Working Paper, New York University, New York.

    Google Scholar 

  32. Resende, M. G. C., Rarnakrishnan, K. G., and Drezner, Z. (1995). Computing lower bounds for the quadratic assignment problem with an interior point solver for linear programming. Operations Research, 43:781–791.

    Article  MathSciNet  MATH  Google Scholar 

  33. Rijal, M. P. (1995). Scheduling, Design and Assignment Problems with Quadratic Costs. PhD thesis, New York University.

    Google Scholar 

  34. Schrijver, A. (1986). Theory of Linear and Integer Programming. Wiley-Interscience Series in Discrete Mathematics. John Wiley & Sons, Chichester New York.

    MATH  Google Scholar 

  35. Schrijver, A. (1995). Polyhedral combinatorics. In Graham, R. L., Grötschel, M., and Lovász, L., editors, Handbook of Combinatorics, volume 2, chapter 30, pages 1649–1704. Elsevier Science.

    Google Scholar 

  36. Weyl, H. (1935). Elementare Theorie der konvexen Polyeder. Comm. Math. Helv., 7:290–306.

    Article  MathSciNet  MATH  Google Scholar 

  37. Wolsey, L. A. (1998). Integer Programming. John Wiley &; Sons, Inc.

    MATH  Google Scholar 

  38. Ziegler, G. M. (1995). Lectures on Polytopes, volume 152 of Graduate Texts in Mathematics. Springer-Verlag, New York. (Revised edition: 1998).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kaibel, V. (2000). Polyhedral Methods for the QAP. In: Pardalos, P.M., Pitsoulis, L.S. (eds) Nonlinear Assignment Problems. Combinatorial Optimization, vol 7. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3155-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3155-2_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4841-0

  • Online ISBN: 978-1-4757-3155-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics