Skip to main content

Multidimensional Assignment Problems Arising in Multitarget and Multisensor Tracking

  • Chapter
Nonlinear Assignment Problems

Part of the book series: Combinatorial Optimization ((COOP,volume 7))

Abstract

The ever-increasing demand in surveillance is to produce highly accurate target and track identification and estimation in real-time, even for dense target scenarios and in regions of high track contention. The use of multiple sensors, through more varied information, has the potential to greatly enhance target identification and state estimation. For multitarget tracking, the processing of multiple scans all at once yields high track identification. However, to achieve this accurate state estimation and track identification, one must solve an NP-hard data association problem of partitioning observations into tracks and false alarms in real-time. Over the last ten years a new approach to the problem formulation based on multidimensional assignment problems and near optimal solution in real-time by Lagrangian relaxation has evolved and is proving to be superior to all other approaches. This work reviews the problem formulation and algorithms with some suggested future directions.

This work was partially supported by the Air Force Office of Scientific Research through AFOSR Grant Number F49620–97–1–0273 and by the Office of Naval Research through ONR Grant Number N00014–99–1–0118.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bar-Shalom, Y. and Li, X. R., editors (1995). Multitarget-Multisensor Tracking: Principles and Techniques. OPAMP Tech. Books, Los Angeles.

    Google Scholar 

  2. Barker, T. N., Persichetti, J. A., Poore, Jr., A. B., and Rijavec, N. (1995). Method and system for tracking multiple regional objects. US Patent Number 5,406,289.

    Google Scholar 

  3. Bertsekas, D. P. (1998). Network Optimization. Athena Scientific, Belmont, MA.

    MATH  Google Scholar 

  4. Blackman, S. and Popoli, R. (1999). Design and Analysis of Modern Tracking Systems. Artech House, Norwood, MA.

    MATH  Google Scholar 

  5. Chummun, M., Kirubarajan, T., Pattipati, K., and Bar-Shalom, Y. (1999). Efficient multidimensional data association for multisensor-multitarget tracking using clustering and assignment algorithms. In Proc. 2nd International Conference on Information Fusion, Silicon Valley, CA.

    Google Scholar 

  6. Deb, S., Pattipati, K. R., and Bar-Shalom, Y. (1993). A. multisensor-multitarget data association algorithm for heterogeneous systems. IEEE Transactions on Aerospace and Electronic Systems, 29:560–568.

    Article  Google Scholar 

  7. Deb, S., Pattipati, K. R., Bar-Shalom, Y., and Yeddanapudi, M. (1997). A generalized s-dimensional assignment algorithm for multisensor multitarget state estimation. IEEE Transactions on Aerospace and Electronic Systems, 33:523–538.

    Article  Google Scholar 

  8. Drummond, O. (1999). Target tracking. In Wiley Encyclopedia of Electrical and Electronics Engineering, Vol. 21, pages 377–391. Wiley.

    Google Scholar 

  9. Garvey, M. and Johnson, D. (1979). Computers and Intractability: A guide to the theory ofNP-Completeness. W.H. Freeman & Co., CA.

    Google Scholar 

  10. Jonker, R. and Volgenant, A. (1987). A shortest augmenting path algorithm for dense and sparse linear assignment problems. Computing, 38:325–340.

    Article  MathSciNet  MATH  Google Scholar 

  11. Kirubarajan, T., Bar-Shalom, Y., and Pattipati, K. R. (1997). Multiassignment for tracking a large number of overlapping objects. In Proceedings SPIE Conf. Signal & Data Proc. of small Targets, VOL. 3136, San Diego, CA.

    Google Scholar 

  12. Kirubarajan, T., Wang, H., Bar-Shalom, Y., and Pattipati, K. (1998). Efficient multisensor fusion using multidimensional assignment for multitarget tracking. In Proceedings SPIE Conf. Signal Processing, Sensor Fusion and Target Recognition, Orlando, FL.

    Google Scholar 

  13. Kiwiel, K. C. (1985). Methods of descent for nondifferentiable optimization. Lecture Notes in Mathematics 1133. Springer-Verlag, Berlin.

    Google Scholar 

  14. Morefield, C. L. (1977). Application of 0–1 integer programming to multitarget tracking problems. IEEE Transactions on Automatic Control, 22(3):302–312.

    Article  MathSciNet  MATH  Google Scholar 

  15. Murphey, R., Pardalos, P., and Pitsoulis, L. (1998a). A GRASP for the multi-target multi-sensor tracking problem. In Networks, Discrete Mathematics and Theoretical Computer Science Series, volume 40, pages 277–302. American Mathematical Society.

    MathSciNet  Google Scholar 

  16. Murphey, R., Pardalos, P., and Pitsoulis, L. (1998b). A parallel GRASP for the data association multidimensional assignment problem. In Parallel Processing of Discrete Problems, IMA Volumes in Mathematics and its Applications, volume 106, pages 159–180. SpringerVerlag.

    Article  MathSciNet  Google Scholar 

  17. Nemhauser, G. L. and Wolsey, L. A. (1988). Integer and Combinatorial Optimization. John Wiley and Sons, New York.

    MATH  Google Scholar 

  18. Poore, A. B. (1994). Multidimensional assignment formulation of data association problems arising from multitarget tracking and multisensor data fusion. Computational Optimization and Applications, 3:27–57.

    Article  MathSciNet  MATH  Google Scholar 

  19. Poore, A. B. and A.J. Robertson, I. (1997). A new class of lagrangian relaxation based algorithms for a class of multidimensional assignment problems. Computational Optimization and Applications, 8(2): 129–150.

    Article  MathSciNet  MATH  Google Scholar 

  20. Poore, A. B. and Drummond, O. E. (1997). Track initiation and maintenance using multidimensional assignment problems. In Pardalos, P. M., Hearn, D., and Hager, W., editors, Network Optimization, volume 450 of Lecture Notes in Economics and Mathematical Systems, pages 407–422. Springer-Verlag.

    Google Scholar 

  21. Poore, A. B. and Rijavec, N. (1991a). Multidimensional assignment problems, and lagrangian relaxation. In Proceedings of the SDI Panels on Tracking, volume Issue No. 2, pages 3–51 to 3–74, Institute for Defense Analyses.

    Google Scholar 

  22. Poore, A. B. and Rijavec, N. (1991b). Multitarget tracking and multidimensional assignment problems. In Proceedings of the 1991 SPIE Conference on Signal and Data Processing of Small Targets 1991, volume 1481, pages 345–356.

    Google Scholar 

  23. Poore, A. B. and Rijavec, N. (1993). A Lagrangian relaxation algorithm for multi-dimensional assignment problems arising from multitarget tracking. SIAM Journal on Optimization, 3(3):545–563.

    Article  MathSciNet  Google Scholar 

  24. Poore, A. B. and Rijavec, N. (1994). A numerical study of some data association problems arising in multitarget tracking. In Hager, W. W., Hearn, D. W., and Pardalos, P. M., editors, Large Scale Optimization: State of the Art, pages 339–361, Boston, MA. Kluwer Academic Publishers B. V.

    Chapter  Google Scholar 

  25. Poore, A. B., Rijavec, N., and Barker, T. (1992). Data association for track initiation and extension using multiscan windows. In Signal and Data Processing of Small Targets 1992, Proc. SPIE 1698, 1992, volume 1698, pages 432–441.

    Google Scholar 

  26. Poore, A. B., Rijavec, N., Barker, T., and Munger, M. (1993). Data association problems posed as multidimensional assignment problems: numerical simulations. In Drummond, O. E., editor, Signal and Data Processing of Small Targets 1954, pages 564–573. Proceedings of the SPIE.

    Chapter  Google Scholar 

  27. Poore, A. B. and Yan, X. (1999). Some algorithmic improvements in multi-frame most probable hypothesis tracking. In Drummond, O., editor, Signal and Data Processing of Small Targets, SPIE.

    Google Scholar 

  28. Poore, Jr., A. B. (1996). Method and system for tracking multiple regional objects by multi—dimensional relaxation. US Patent Number 5,537,119.

    Google Scholar 

  29. Poore, Jr., A. B. (issue on September 28, 1999). Method and system for tracking multiple regional objects by multi—dimensional relaxation, cip.US patent number 5,959,574.

    Google Scholar 

  30. Popp, R., Pattipati, K., Bar-Shalom, Y., and Gassner, R. (1998). An adaptive m-best SD assignment algorithm and parallelization for multitarget tracking. In Proceedings 1998 IEEE Aerospace Conference, Snowmass, CO.

    Google Scholar 

  31. Reid, D. B. (1996). An algorithm for tracking multiple targets. IEEE Transactions on Automatic Control, 24(6):843–854.

    Article  Google Scholar 

  32. Robertson, A. (2000). A set of greedy randomized adaptive local search procedure (GRASP) implementations for the multidimensional assignment problem.

    Google Scholar 

  33. Schramm, H. and Zowe, J. (1992). A version of the bundle idea for minimizing a nonsmooth function: Conceptual idea, convergence analysis, numerical results. SIAM Journal on Optimization, 2:121–152.

    Article  MathSciNet  MATH  Google Scholar 

  34. Shea, P. J. and Poore, A. B. (1998). Computational experiences with hot starts for a moving window implementation of track maintenance. In 1998 SPIE Conference Proceedings 3373, Signal and Data Processing of Small Targets 1998, Orlando, FL.

    Google Scholar 

  35. Shor, N. Z. (1985). Minimization Methods forNon-Difjerentiable Functions. Springer-Verlag, New York.

    Book  Google Scholar 

  36. Sittler, R. W. (1964). An optimal data association problem in surveillance theory. IEEE Transactions on Military Electronics, 8(2):125–139.

    Article  Google Scholar 

  37. Waltz, E. and Llinas, J. (1990). Multisensor Data Fusion. Artech House, Boston, MA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Poore, A.B. (2000). Multidimensional Assignment Problems Arising in Multitarget and Multisensor Tracking. In: Pardalos, P.M., Pitsoulis, L.S. (eds) Nonlinear Assignment Problems. Combinatorial Optimization, vol 7. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3155-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3155-2_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4841-0

  • Online ISBN: 978-1-4757-3155-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics