Bioelectricity pp 245-311 | Cite as

Cardiac Electrophysiology and the Egg

  • Robert Plonsey
  • Roger C. Barr


The application of quantitative (engineering) methods in electrophysiology is extensive; its early history developed with studies on the heart. As an electrical generator the heart can be approximated by a single dipole (with varying magnitude and orientation through the cardiac cycle). Its signal strength is considerably larger than that from other bioelectric sources; body surface signals of around 5 mV are typical. So, the model simplicity, the relative ease of measurement, and the recognized importance of heart disease as one of the major causes of morbidity and mortality in the western world attracted the early attention of (quantitative) physiologists, engineers, physicists, and mathematicians. In fact, this interest continues to drive the cutting-edge research today based on increasingly complex and accurate electrophysiological models. This chapter is designed to introduce the reader to the underlying fundamentals.


Volume Conductor Cardiac Electrophysiology Lead Field Heart Surface Bidomain Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. J. Colatsky and R. W. Tsien, Electrical properties associated with wide intercellula r clefts in Purkinje fibers, J. Physiol 290:227–252 (1979).Google Scholar
  2. 2.
    R. A. Chapman and C. H. Fry, An analysis of the cable properties of frog ventricular myocard ium, J. Physiol. 283:263–282 (1978).Google Scholar
  3. 3.
    D. Durrer et al. Total excitation of the isolated human heart, Circulation 41:899–912 (1970).CrossRefGoogle Scholar
  4. 4.
    R. Weingart, Electrical properties of the nexal membrane studied in rat ventricular cell p airs, J. Physiol. 370:267–284 (1986).Google Scholar
  5. 5.
    M. Spach and J. F. Heidlage, A multidimensional model of cellular effects on the spread of electrotonic currents and on propagating action potentials, Crit. Rev. Biomed. Eng. 20:141–169 (1982).Google Scholar
  6. 6.
    R. D, Veenstra and E. L. DeHaan. Measurement of single channel currents from cardiac gap junctions, Science 233:972–974 (1986).CrossRefGoogle Scholar
  7. 7.
    A. L. Muller and V. S. Markin, Electrical properties of anisotropic nerve-muscle syncytia II, Spread of flat front of excitation, Biophysics 22:536–541 (1978).Google Scholar
  8. 8.
    D. E. Roberts and A. Scher. Effect of tissue anisotropy on extracellular potential fields in the canine myocardium in situ, Circ. Res. 50:342–351 (1982).CrossRefGoogle Scholar
  9. 9.
    R. Plonsey and A. van Oosterom, Implications of macroscopic source strength on cardiac cellular activation models, J. Electrocard. 24:99–112 (1991).CrossRefGoogle Scholar
  10. 10.
    R. Plonsey and R. C. Barr, A critique of impedance measurements in cardiac tissue, Ann. Biomed. Eng. 14:308–322(1986).CrossRefGoogle Scholar
  11. 11.
    R. M. Gulrajani, Bioelectricity and Biomagnetism, John Wiley & Sons, New York, 1998.Google Scholar
  12. 12.
    E. Frank, General theory of heart-vector projection, Circ. Res. 2:258–270 (1954).CrossRefGoogle Scholar
  13. 13.
    H. Burger and J. B. van Milaan, Heart vector and leads: II and III, Brit. Heart J. 9:154–160 (1947).CrossRefGoogle Scholar
  14. 13a.
    H. Burger and J. B. van Milaan, Heart vector and leads: II and III, Brit. Heart J. 10:229–233 (1948).CrossRefGoogle Scholar
  15. 14.
    A. C. L. Barnard, I. M. Duck, and M. S. Lynn, The application of electromagnetic theory to electrocardiology II. Numerical solution of the integral equation, Biophys. J. 7:463–491 (1967).CrossRefGoogle Scholar
  16. 15.
    R. H. Selvester, J. C. Solomon, and T. L Gillespie, Digital computer model of a total body electrocardiographic surface map, Circulation 38:684–690 (1968).CrossRefGoogle Scholar
  17. 16.
    B. M. Horacek, The effect of electrocardiographic lead vectors of conductivity inhomogeneities in the human torso, PhD thesis, Dalhousie University, Halifax, Canada, 1971. See also Lead Theory, in Comprehensive Electrocardiography, P. W. Macfarlane and T. D. Veitch Lawrie, eds. Pergamon Press, New York, 1989.Google Scholar
  18. 17.
    R. Gulrajani and G. E. Mailloux, A simulation study of the effects of tissue inhomogeneities on electrocardiographic potentials using realistic heart and torso models. Circ. Res. 52:43–56 (1983).CrossRefGoogle Scholar
  19. 18.
    C. R. Johnson, R. S. MacLeod, and P. R. Ershler, A computer model for the study of electrical current flow in the human thorax, Comput. Biol. Med. 22:305–323 (1992).CrossRefGoogle Scholar
  20. 19.
    R. N. Klepfer, C. R. Johnson, and R. S MacLeod, The effects of inhomogeneities and anisotropies on electrocardiographic fields: A 3D finite element study. IEEE Trans. Biomed. Eng. 44:706–719 (1997).CrossRefGoogle Scholar
  21. 20.
    J, Hyttinen, P. Kauppinen, T, Köbbi, and J. Malmivuo, Importance of the tissue conductivity values in modeling the thorax as a volume conductor, in Proc. 19th Inter. Conf. IEEE Eng. in Med. Biol. Soc. IEEE Press, New York, 1997, pp. 2082–2085.Google Scholar
  22. 21.
    R. McFee and F. D. Johnston. Electrocardiographic leads. I, II, III, Circulation 8:554–567 (1953).CrossRefGoogle Scholar
  23. 21a.
    R. McFee and F. D. Johnston. Electrocardiographic leads. I, II, III, Circulation 9:255–266 (1954).CrossRefGoogle Scholar
  24. 21b.
    R. McFee and F. D. Johnston. Electrocardiographic leads. I, II, III, Circulation 9:868–880 (1954).CrossRefGoogle Scholar
  25. 22.
    E. Frank, Volume conductors of finite extent, Ann. N. Y. Acad. Sci. 65:980–1002 (1957).CrossRefGoogle Scholar
  26. 23.
    R. Plonsey, Dependence of scalar potential measurements on electrode geometry, Rev. Sci. Inst 36:1034–1036 (1965).CrossRefGoogle Scholar
  27. 24.
    A. Van Oosterom and R. van Dam, Potential distribution in the left ventricular wall during depolarization, Adv. Cardiol. 16:27–31 (1976).Google Scholar
  28. 25.
    J. J. M. Cuppen, Calculating the isochrones of ventricular depolarization, SIAM J. Sci. Stat. Comput. 5:105–120 (1985).MathSciNetGoogle Scholar
  29. 26.
    J. J. M. Cuppen and A. van Oosterom, Model studies with the inversely calculated isochrones of ventricular depolarization, IEEE Trans. Biomed. Eng. 31:652–659 (1984).CrossRefGoogle Scholar
  30. 27.
    G. J. M. Huiskamp and A. van Oosterom, The depolarization sequence of the human heart surface computed from body surface potentials, IEEE Trans. Biomed. Eng. 35:1047–1058 (1988).CrossRefGoogle Scholar
  31. 28.
    H. Oster, B. Taccardi, R. L. Lux, P. R. Ershler, and Y. Rudy, Noninvasive electrocardiographic imaging: Reconstruction of epicardial potentials, electrograms, and isochrones, and localization of single and multiple cardiac events, Circulation 46:1012–1024 (1997).CrossRefGoogle Scholar
  32. 29.
    Y. Rudy and H. Oster, The electrocardiographic inverse problem, Crit. Rev. Biomed. Eng. 20:25–45 (1992).Google Scholar
  33. 30.
    Y. Rudy and B. J. Messenger-Rapport, The inverse problem in electrocardiography: solutions in terms of epicardial potentials, CRC Crit. Rev. Biomed. Eng. 16:215–268 (1988).Google Scholar
  34. 31.
    R. Gulrajani, R Savard, and F. A Roberge, The inverse problem in electrocardiography. Solutions in terms of equivalent sources, CRC Crit. Rev. Biomed. Eng. 16:171–214 (1988).Google Scholar
  35. 32.
    M. Foster, An application of Wiener-Kolmogorov smoothing theory to matrix inversion, J. Soc. Indust. Appl. Math. 9:387–392 (1961).MathSciNetzbMATHCrossRefGoogle Scholar
  36. 33.
    O. N. Strand and E. R. Westwater, Minimum rms estimation of the numerical solution of a Fredholm integral equation of the first kind, SIAM J. Numer. Anal. 5:287–295 (1968).MathSciNetzbMATHCrossRefGoogle Scholar
  37. 34.
    R. C. Barr and M. Spach, Inverse calculation of QRS-T epicardial potentials from body surface potential distribution for normal and ectopic beats in the intact dog, Circ. Res. 42:661–675 (1978).CrossRefGoogle Scholar


  1. 1.
    R. Plonsey, Bioelectric Phenomena, McGraw-Hill, New York, 1969.Google Scholar
  2. 2.
    B. F. Hoffman and P. F. Cranefield, Electrophysiology of the Heart, McGraw-Hill, New York, 1960.Google Scholar
  3. 3.
    J. Liebman, R. Plonsey, and P. Gillette, Pediatric Electrocardiography, Williams and Wilkins, Baltimore, 1982.Google Scholar
  4. 4.
    R. Gulrajani, Bioelectricity and Biomagnetism, Wiley, New York, 1998.Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Robert Plonsey
    • 1
  • Roger C. Barr
    • 1
  1. 1.Edmund T. Pratt Jr., School of EngineeringDuke UniversityDurhamUSA

Personalised recommendations