Action Potentials

  • Robert Plonsey
  • Roger C. Barr


A simple cellular electrophysiological model is that shown in Fig. 5.1. Here the cell membrane separates the extracellular and intracellular spaces. Both regions may be idealized as passive and uniformly conducting (though with different conductivities). If an adequate stimulating current is passed between a pair of electrodes at the surface of the cell, then an action potential is elicited. From an initial site the action potential will propagate to all parts of the cell. This chapter is devoted to a quantitative examination of these observations.


Transmembrane Potential Potassium Current Voltage Clamp Sodium Current Giant Axon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. S. Cole and H. J. Curtis, Electrical impedance of the squid giant axon during activity, J. Gen. Physiol. 22:649–670(1939).CrossRefGoogle Scholar
  2. 2.
    A. L. Hodgkin and B. Katz, The effect of sodium ions on the electrical activity of the giant axon of the squid, J. Physiol 108:37–77 (1949).Google Scholar
  3. 3.
    W. L. Nastuk and A. L. Hodgkin, The electrical activity of single muscle fibers, J. Cell Comp. Physiol. 35:39–73 (1950).CrossRefGoogle Scholar
  4. 4.
    R. D. Keynes, The ionic measurements during nervous activity. J. Physiol 114:119–150 (1951).Google Scholar
  5. 5.
    K. S. Cole and G. Marmont, The effect of ionic environment upon the longitudinal impedance of the squid axon. Fed. Proc. 1:15–16 (1942).Google Scholar
  6. 6.
    A. L. Hodgkin, A. F. Huxley, and B. Katz, Measurement of current-voltage relations in the membrane of the giant axon of Loligo, J. Physiol 116:424–448 (1952).Google Scholar
  7. 7.
    A. L. Hodgkin and A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. 117:500–544 (1952).Google Scholar
  8. 8.
    A. L. Hodgkin and R. D. Keynes, Active transport of cations in giant axons from Sepia and Loligo, J. Physiol 128:28–60(1955).Google Scholar
  9. 9.
    J. B. Chapman, M. Kootsey, and E. A. Johnson, Kinetic model for determining the consequences of electrogenic active-transport in cardiac muscle, J. Theor. Biol 80:405–424 (1979).CrossRefGoogle Scholar
  10. 10.
    R. H. Adrian and C. L. Slayman, Membrane potential and conductance during transport of sodium, potassium, and rubidium in frog muscle, J. Physiol 184:970–1014 (1966).Google Scholar
  11. 11.
    B. Frankenhaeuser and A. F. Huxley, The action potential in the myelinated nerve fiber of Xenopus laevis as computed on the basis of voltage clamp data, J. Physiol 171:302–315 (1964).Google Scholar
  12. 12.
    G. Schoepfle, G. C. Johns, and G. F. Molnar, Simulated responses of depressed and hyperpolarized medulated nerve fibers. Am. J. Physiol. 216:932–938 (1969).Google Scholar
  13. 13.
    D. L. Campbell, W. R. Giles, J. R. Hume, D. Doble, and E. F. Shibata, Reversal potential of the calcium current in bull-frog atrial myocytes, J. Physiol 43:267–286 (1988).Google Scholar
  14. 14.
    C.-H. Luo and Y. Rudy, A dynamic model of the cardiac ventricular action potential. Circ. Res. 74:1071–1096(1994).CrossRefGoogle Scholar
  15. 15.
    L. Ebihara and E. A. Johnson, Fast sodium current in cardiac muscle, Biophys. J. 32:779–790 (1980).CrossRefGoogle Scholar
  16. 16.
    G. W. Beeler and H. Reuter, Reconstruction of the action potential of ventricular myocardial fibers, J. Physiol. 268:177–210 (1977).Google Scholar
  17. 17.
    D. DiFrancesco and D. Noble, A model of cardiac activity incorporating ionic pumps and concentration charges, Phil Trans. R. Soc. London 307:353–398 (1985).CrossRefGoogle Scholar
  18. 18.
    L. Ebihara, S. Norikazu, M. Lieberman, and E. A. Johnson, The initial inward current in spherical clusters of chick embryonic heart cells, J. Gen. Physiol. 75:431–456 (1980).CrossRefGoogle Scholar
  19. 19.
    D.E. Goldman, Potential, impedance, and rectification in membranes, J. Gen. Physiol. 27:37–60 (1943).CrossRefGoogle Scholar


  1. 20.
    D. J. Aidley, The Physiology of Excitable Cells, Cambridge University Press, Cambridge, 1978.Google Scholar
  2. 21.
    B. Hille, Ionic Channels of Excitable Membranes,2d edn., Sinauer Associates, Sunderland, MA, 1992.Google Scholar
  3. 22.
    R. Plonsey, Bioelectric Phenomena, McGraw-Hill, New York, 1969.Google Scholar
  4. 23.
    J. E. Randall, Microcomputers and Physiological Simulation, 2nd edn., Raven Press, New York, 1987.Google Scholar
  5. 24.
    J. Cronin, Mathematical Aspects of Hodgkin-Huxley Neural Theory, Cambridge University Press, Cambridge, 1987.zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Robert Plonsey
    • 1
  • Roger C. Barr
    • 1
  1. 1.Edmund T. Pratt Jr., School of EngineeringDuke UniversityDurhamUSA

Personalised recommendations