Skip to main content

Functional Electrical Stimulation

  • Chapter
Bioelectricity

Abstract

If a motor nerve is stimulated from an external electrode, the resulting action potential will propagate to the innervated muscle and a twitch will be produced. The muscle responds to the artificially initiated nerve signal just as it would a naturally occurring signal. For patients with (for example) spinal cord injury, signals originating in the brain may be unable to reach the desired motoneuron because of a transected cord. In this case, the affected muscle is paralyzed although it may, otherwise, be healthy and capable of excitation and contraction. In this situation an artificial signal initiated in the nerve will evoke a response. Devising strategies for the stimulation of motoneurons (or the muscle itself) to effect desired muscle contraction is the goal of functional neuromuscular stimulation (FNS), and the subject of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Mortimer, Motor prostheses, Handbook of Physiology, Section I: The Nervous System, Volume II, Motor Control, Part I, American Physiological Society. Bethesda, MD, 1981, pp. 155–187.

    Google Scholar 

  2. A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications. Wiley, New York, 1980.

    Google Scholar 

  3. A. M. Dymond, Characteristics of the metal-tissue interface of stimulation electrodes. IEEE Trans. Biomed. Eng. BME 23:274–280 (1976).

    Article  Google Scholar 

  4. L. S. Robblee and T. L. Rose, Electrochemical guidelines for selection of protocols and ele ctrode materials for neural stimulation, in Neural Prostheses, W. F. Agnew and D. B. McCreery, eds., Prentice-Hall, Englewood Cliffs, NJ, 1990.

    Google Scholar 

  5. K. Henneberg and R. Plonsey, Boundary element analysis in bioelectricity, in Industrial Applications of the Boundary Element Method, C. A. Brebbia and M. H. Aliabadi, eds., Computational Mechanics Publications, Southampton, 1993.

    Google Scholar 

  6. D. L. Guyton and F. T. Hambrecht, Theory and design of capacitor electrodes for chronic stimulation, Med. Biol Eng. 12:613–619 (1974).

    Article  Google Scholar 

  7. W. F. Agnew and D. B. McCreery, eds., Neural Prostheses, Prentice-Hall Englewood Cliffs, NJ, 1990, Chaps, 6, 9, 11.

    Google Scholar 

  8. B. Frankenhaeuser and A. Huxley. The action potential in the myelinated nerve fiber of Xenopus Laevis as computed on the basis of voltage clamp data, J. Physiol 171:302–315 (1964).

    Google Scholar 

  9. J. H. Reilly, Electrical models for neural excitation studies, APL Digest 9:44–58 (1988).

    Google Scholar 

  10. D. McNeal, Analysis of a model for excitation of myelinated nerve, IEEE Trans. Biomed. Eng. 23:329–337 (1976).

    Article  Google Scholar 

  11. G. Lundborg, Nerve Injury and Repair, Churchill-Livingston, London, 1988.

    Google Scholar 

  12. G. Naples, J. T. Mortimer, and T. G. Yuen, Overview of peripheral nerve electrode design and implantation, in Neural Prostheses, W. F. Agnew and D. B. McCreery, eds., Prentice-Hall, Englewood, Cliffs, NJ, 1990.

    Google Scholar 

  13. P. Koole, J. Holsheimer, J. J. Struijk, and A. J. Verloop, Recruitment characteristics of nerve fascicles stimulated by a multigroove electrode, IEEE Trans. Rehab. Eng. 5:40–50 (1997).

    Article  Google Scholar 

  14. W. M. Grill and J. T. Mortimer, Quantification of recruitment properties of multiple contact cuff electrodes, IEEE Trans. Rehab. Eng. 4:49–62 (1996).

    Article  Google Scholar 

  15. M. Karkar, Nerve excitation with a cuff electrode—a model, M.S. Thesis, Case Western Reserve University, Cleveland, Ohio, 1975.

    Google Scholar 

  16. W. B. Marks, Polarization changes of stimulated cortical neurons caused by electrical stimulation at the cortical surface, in Functional Electrical Stimulation, J. B. Reswick and F. T. Hambrecht, eds., Academic Press, New York, 1977.

    Google Scholar 

  17. J. P. Reilly, Applied Electricity, Springer-Verlag, New York, 1998.

    Book  Google Scholar 

  18. S. W. Kuffler and E. M. Vaughn Williams, Small nerve functional potentials. The distribution of small motor nerves to frog skeletal muscle, and the membrane characteristics of the fibers they innervate, J. Physiol. 121:289–317 (1953).

    Google Scholar 

  19. Z. P. Fang and J. T. Mortimer, A method to effect physiological recruitment order in electrically activated muscle, IEEE Trans. Biomed. Eng. 38:175–179 (1991).

    Article  Google Scholar 

Books

  1. R. B. Stein, P. H. Peckham, and D. P. Popovic, Neural Prostheses, Oxford University Press, New York, 1992.

    Google Scholar 

  2. F. Rattay, Electrical Nerve Stimulation, Springer-Verlag, Wien, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Plonsey, R., Barr, R.C. (2000). Functional Electrical Stimulation. In: Bioelectricity. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3152-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3152-1_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-3154-5

  • Online ISBN: 978-1-4757-3152-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics